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Spatial Representation and Estimation on a Mobile-Manipulation Robot
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Data Association for Semantic World Modeling from Partial Views

I Previously, I have developed two different estimators for the world modeling
problem, the estimation of objects’ states within the world. Abstractly, on the level
of object attributes, a system exists that takes black-box attribute detections, such
as object type and pose, and estimates the objects that are present (including their
number, which is unknown) and their attribute values.

I This introduces data association issues, because it is unclear which measurements
correspond to the same object across different views. I proposed a Bayesian
nonparametric batch-clustering approach, inspired by the observation that ‘objects’
are clusters in joint attribute space. Given attribute detections from multiple
viewpoints, this algorithm outputs samples from the distribution over hypotheses of
object states, where a hypothesis is a list of objects and their attribute values.

Combining Object and Metric Spatial Information

I Although this gives an elegant ‘semantic’ view of objects as clusters in
joint-attribute space, it ignores crucial information related to the geometric
realization of objects, such as their physical extent in space. In particular, low-level
observations on whether specific ‘voxels’ of space are occupied/free cannot be easily
incorporated on the object-attribute level. Such observations are traditionally
tracked using occupancy grids, and I developed a second estimator that attempts to
fuse object-attribute estimates with geometric occupancy grids.

I Because filtering in the joint state involves complex dependencies and is intractable,
I instead adopted the strategy of filtering separately in the object and metric spaces
by using the existing filters. To compensate for the lost dependencies between
objects and their geometric realizations, I then developed a way to merge the filters
on demand as queries about either posterior distribution are made.

Proposed Framework: Mismatch, Attention, Refinement, and Learning

I Mismatch: Fault detection.
If deviations between expected and observed values exceed thresholds (given by the
task), the current model is inadequate, and must be refined.

I Attention: Task relevance.
Without constraints, the model can always be refined until it reaches the model-free
case. For many tasks, however, only a small subset of variables benefit the task with
additional accuracy. CPS need a way to ‘focus’ on relevant variables for given tasks.

I Refinement: Model class expansion.
Once a relevant variable’s model is inadequate, a larger model class should be
explored, for a small subset of related variables only.

I Learning: Estimating parameters.
Expanded model classes will have additional parameters to be learned. Ultimately,
non-parametric ‘models’ can act as a final refinement, where empirical estimates are
used directly, as in model-free approaches.

Illustration: Model Attention and Selection

I As a proof-of-concept, consider the domain and task above (left). The task is to
locate (to some specified uncertainty tolerance) red objects on the real line. The
näıve solution is to run all estimators on all the observations, as depicted on the
right. Since the task is to locate only red objects, this approach, while sound, is
inefficient, especially if the domain is large and contains few red objects.

I Instead, consider the estimator below (left). Only objects whose color attribute is
red with high probability are given attention; the rest is discarded/ignored. This is
conceivably the minimal estimator for the task. However, these observations are
very noisy (e.g., the output of an entire object detection pipeline) and lead to large
variance in the posterior attribute distribution, above the required tolerance. The
performance of this estimator is therefore mismatched for the task, and therefore
estimator refinement is necessary.

I The refinement process involves adding new variables to the estimator and
estimating their values based on a buffer of lazily-stored recent observation values.
Variables are ranked and added (up to a threshold) if they provide sufficient
improvement in expected cost f (·) (in this case, cost = variance):

f (pX |Y ) , Ey∼pY

[
f (pX )− f (pX |Y =y)

]
; pY =

∫
pY |X =x pX (x) dx

I This leads to the addition of two sets of variables. The first set, for the left red
object, is a subset of occupancy grid cells; their primary purpose is to distinguish the
boundary of the object more finely. The second set, for the right red object, not
only does it include associated occupancy grid cells, it also includes the
attribute-level variables of the nearby blue object. This latter variable is helpful
because of the domain constraint that objects cannot overlap each other, which
introduces correlations between the states of the two objects.

Future directions

I Principled mismatch detection: Fault detection & identification / diagnosis
I Human-in-the-loop to provide interpretable attention guidance
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