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Description

ecology	of	heterogeneous
machine sensors/actuators	

ecology	of	heterogeneous
human sensors/actuators	

future	CPS	=	machine	behavior
+	human	behavior Findings Figure	4

Application 1:  CPS + social media à
emergence of macroscopic gel dynamics

The urgent challenge for CPS

Application 2:  Surprising positive impact 
of less smart components 

Application 3: Impact of decision-making 

2019

(a) Ceiling fan device status pattern

(b) Ceiling light device status pattern

(c) A/C device status pattern

(d) Desk light device status pattern

Fig. 2: Patterns among all targeted resources. The
on pulses point to instances that the thresholding
system indicates activity in the device.

where ✏i is the unobserved random component of the agent’s
utility, gi(�i, x) is a nonlinear generalization of agent i’s utility

function, and where
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is the collective n features explaining an agent’s decision
process. The choice of nonlinear mapping gi and x abstracts
the agent’s decision; it could represent, e.g., how much of
a particular resource they choose to use and when an agent
optimizes its usage over a specific resource. In general, each
agent is modeled as a utility maximizer that seeks to select
i 2 I by optimizing (2).

Discrete choice models in their classical representation [39]
are given by a linear mapping gi(�i, x) = �
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i x in which

✏i is an independently and identically distributed random
value modeled using a Gumbel distribution. According to [39,
Chapter 3], the probability that agent i chooses choice j 2 J
is given by
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According to (4), each agent’s probability of a specific

choice is given by a Logit model from the linearity assump-
tion for the feature representative utility and the Gumbel
distribution modeling the unknown random variable. Other
distributions could be used (e.g. Gaussian for Probit model),
and this is a design flexibility of discrete choice models.

B. Game Formulation
To model the outcome of the strategic interactions of

agents in the deployed social game, we use a sequential non-
cooperative discrete game concept. Introducing a generalized
decision-making model for each agent (2), in which random
utility can be modeled either with linear or nonlinear mapping,
a sequential non-cooperative discrete game is given by

Definition 1. Each agent i has a set Fi = f
1
i , . . . , f

N
i of N

random utilities. Each random utility j has a convex decision-
making choice set Ij = {J 1

j , . . . ,J S
j }. Given a collective of n

features (3) comprising the decision process, agent i faces the
following optimization problem for their aggregated random
utilities:

max{
NX

i=1

fi(x), for fi 2 Fi}. (5)

In the sequential equilibrium concept, we simulate the
game defined by the estimated random utility functions per
resource to demonstrate the actual decision-making process
of each individual dorm occupant. Agents in the game in-
dependently co-optimize their aggregated random utilities (5)
given a collective of n features (3) at each time instance.
A general incentive design mechanism (1) motivates their
potential actions across various given decision-making choice
sets.

The above definition extends the definition of a discrete
choice model [39] to sequential games in which agents con-
currently co-optimize several discrete (usually mutually exclu-
sive) choices. Using this definition, we can apply the proposed
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Extremes observed in human-machine 
CPS systems raise serious concerns

about implicit risk, safety & security of
CPS that operate in everyday world

Our theoretical solution 
(see schematic below) is 
unique in its analytical, 

many-body, scalable nature 
& is grounded 

by controlled human-machine 
laboratory experiments
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Our theory of extremes: Mathematical & 
empirical verification & validation   

The large fluctuations (i.e. extreme behaviors) in real-world CPS systems 
are not well understood 

They pose threats to efficiency 
and, depending on context, human safety, system stability and security

(Energy conservation experiment at Nanyang Technological University)
Applied Energy, Volume 237, 1 March 2019, Pages 810-821
Berkeley group: Konstantakopoulos et al.

This urgent societal
& scientific need 
to understand 

extremes in 
real-world

human-machine 
CPS, can be 

fulfilled using
our theory

(e.g. crowd anticrowd)


