
The 4th NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting (2019 SaTC PI Meeting)
October 28-29, 2019 | Alexandria, Virginia

Understanding	the	Performance	of	SGX-
based	Computations

Jeongbin Oh

Instruction Count 2	million 20	million
Compute Sum
Outside	enclave

6705	/	6820 101796	/	1013757

Compute	Sum
Inside enclave

62305	/	62249 817413	/	792673

Compute	Sum
Inside enclave	(array	outside)

6594	/	6791 102354	/	103407

The	modified	version	of	SGX	
with	using	Melbourne	Shuffle	
has	lower	time	complexity	
which	leads	to	better	
performance	compare	to	
classic	word-oblivious	
algorithms	that	is	used	
widely.	Therefore,	the	use	of	
new	version	of	SGX	will	be	
more	safe	to	all	users	using	
cloud	computing.

While in the process of cache-miss obligation,
we	should	be	aware	that	cache-miss	should	
only	touch	the	untrusted	memory	which	are	
made	oblivious.	Therefore,	we	chose	to	use	
Melbourne	shuffle	algorithm	which	shuffle	the	
data	and	divide	them	into	oblivious	and	non-
oblivious.	Especially,	oblivious	ones	goes	to	
external	storage	which	is	untrusted	world	and	
this	leads	the	cache-miss	to	be	generated	
safely.

In	educational	point	of	view,	
the	use	of	our	SGX	would	
bring	more	trust	in	uploading	
significant	information	in	
cloud	computing	system.	
Especially,	it	has	lower	time	
complexity	which	takes	less	
time,	so	the	modified	SGX	
would	bring	faster	and	safer	
outcomes.

Since	our	SGX	uses	Melbourne	
shuffle	to	generate	the	cache-
miss	obliviousness	which	is	
different	from	classic	SGX,	
once	the	efficiency	is	proved,	
this	can	lead	to	better	security	
by	preventing	side-channel	
attacks	more	effectively.

As	technology	is	developing	faster	these	days,	the	use	of	cloud	computing	has	increased	a	lot	such	
as	storing	personal	and	significant	information	in	there.	Since		valuable	information	are	stored,	
various	side-channel	attacks	are	proposed	and	occurred.	To	prevent	these	attacks,	the	SGX	
(software	Guard	eXtension)	is	used	to	protect	the	environment.	Especially,	we	focused	on	using	the	
cache-miss	obliviousness	for	the	defense.	Usually,	the	hardware	enclave	load	data	from	the	cache,	
but	if	the	data	isn’t	in	the	cache,	then	it	loads	from	the	memory	and	this	process	is	called	cache-
miss.	The	cache-miss	obliviousness	let	enclave	features	a	trusted	processor	issuing	cache	misses	to	
access	the	memory	in	untrusted	world	so	that	it	makes	side-channel	attack	more	difficult	although	
it	loads	data	from	untrusted	environment.

Add	Your	Logo	and/or	project	info	here
Award	ID#:

The	chart	above	is	and	example	of	performance	difference	for	simply	computing	the	sum	of	
array	with	3	different	ways.	Computing	sum	in	outside	of	enclave,	inside	of	enclave,	inside	of	
enclave	but	load	the	data	from	outside	of	the	array.	Storing	the	array	of	data	in	inside	enclave	
and	also	computing	it	takes	much	more	time	compare	to	doing	it	in	outside	of	enclave.	However,	
by	putting	the	memory	data	outside	of	enclave,	it	induces	better	performance	than	other	
methods.

An	example	of	Computations:
Shuffling	data	arrays

