
Institute for Software Integrated Systems
Vanderbilt University

Use Case for Formal Methods:

Model-Integration Platform for CPS

Design

Janos Sztipanovits

Vanderbilt University

Model- and Component-based Design for CPS

Testbench
Configuration

Space

R E

S – system model

R
e
q
u
ir
e
m

e
n
ts

E
n
v
ir
o
n
m

e
n
t

Design Space

Component
Model

Repository

Testbench
Template
Repository

Model
Composition

Testbench
Integration

Multidisciplinary Verification,
Testing and Optimization

No

Yes

 Drive-train and hull design
for FANG vehicle; AVM progr.
29 opensource and 8
commercial tools

 Component models that
capture both computational
and physical models

 Modeling language for
evaluation testbenches

 Design space exploration
strategies incorporating
multidisciplinary verification,
testing and optimization

Janos Sztipanovits, Ted Bapty, Xenofon Koutsoukos, Zsolt Lattmann, Sandeep Neema, and Ethan Jackson. Model
and tool integration platforms for cyber-physical system design. Proceedings of the IEEE, (99), 2018.

Model-Integration Platform

• Model Integration Languages (MIL)
are changing because
- the component models are built
 with different modeling tools
- the composed analytics models
 depend on the key requirements

• Semantic precision of MILs requires
explicit modeling of their semantics

• We used MSR FORMULA-2 as the
framework for representing
- formal semantics of semantic interfaces
- formal semantics of model integration
 constructs
- formal semantics of model transformations

• In FANG-1 challenge 19,696 lines of
FORMULA spec.;11, 560 is generated
and 8,136 is manually written

“Hidden Formal Methods”

Are the models well
formed?
How to synthesize/auto-
complete models?

Models
Domain Specific

Modeling
Languages

Domain-Specific Modeling Languages
Programmable syntax & semantics
Configurable visualization
Distributed modeling, version mgmt.

Semantic Domain:
Algebraic Data
Types + Logic

Metaprogrammable
Modeling Tool

WebGME

Formula
Z3
WebGME Link
Libraries

Vanderbilt
https://github.com/webgme

Microsoft Research
github.com/Microsoft/formula

Z3

Microsoft Research
https://github.com/Z3Prover/z3

WEBGME

Tight integration is
essential

Integration Between Model- and Data-driven Tool suites

 WebGME – building models in
a collaborative manner with
customized visualization

 FORMULA – logic-based
modeling language for
executable specification of
semantics

 Tight integration is in
progress

The tool suites have complimentary strengths and
with the emergence of combined application domains
we need services that cut across the tool suites

Define WebGME Metamodel Semantics Using FORMULA 2

 Principles

‒ Models are Labeled Graphs

‒ Metamodels are modeled as Typed

Graphs

 Semantics of WebGME metamodeling

language is defined as typed graphs

and conformance constraints

 Tool integration concept

‒ Translator from WebGME to Formula 2

is implemented as a WebGME plugin

‒ WebGME embeds a FORMULA editor

‒ The WebGME and Forlula 2

representation of models and

metamodels are kept synchronized

Partial representation of translation rules

Anastasia Mavridou, Tamas Kecskes, Qishen Zhang, and Janos Sztipanovits. A common
integrated framework for heterogeneous modeling services. In Proceedings of the 6th
International Workshop on the\ Globalization of Modeling Languages, co-located with
MODELS 2018 (GEMOC 2018), October 2018.

Graph-based specification of WebGME metamodel semantics

 Labeled Graph – A set of
vertices and a set of edges, in
which edge is a binary relation
over two vertices. Each vertex
and edge is mapped to label of
string type.

 Typed Graph – Extend the
Labeled Graph above with an
additional mapping that maps
each node to it type node.

Graph structure is a perfect match to describe
metamodel/models and their hierarchical relationship

