User-Adaptive Variable Impedance Control of a Wearable Upper-Extremity Exoskeleton **Robot with Safety Guarantees**

PI: Hyunglae Lee, Co-PI: Sze Zheng Yong

School for Engineering of Matter, Transport and Energy, Arizona State University (ASU)

Challenges in Physical Human-Robot Interaction (pHRI)

· Primarily focused on designing robots that are energetically dissipative to the human users in order to secure coupled stability, but at the expense of system transparency and agility.

 \cdot Safety has been mainly considered in the context of collision avoidance without considering other factors important for the prevention of musculoskeletal disorders (MSDs).

Solution

· A user-adaptive variable impedance controller will enhance transparency and agility of the coupled human-robot system by incorporating the user's intent of movement and estimates of human mechanical impedance.

• A high-level **supervisory controller** based on the synthesis of robust controlled invariant safety sets will prevent the coupled human-robot system from reaching any unsafe configurations.

Broader Impact on Society

· Potential to reduce work related MSDs, while increasing productivity and decreasing healthcare cost of industrial workers and employers.

· Potential to benefit human-robot systems in clinical and military applications.

Scientific Impact

• The proposed human-in-the-loop controller will transform the way coupled stability in pHRI is achieved, letting the robot be less conservative to improve agility/transparency of the human-robot system without compromising its stability.

• The proposed supervisory control can lead to a paradigm shift towards a controller-centric approach to ensuring safety in pHRI to complement safety considerations through mechanical design.

ser-Adaptive Variable Impedance and Supervisory Controllers Coupled Humar (Thrust 3) Robot System Safety Requiremen Safe Input Human Arm houlder & Elbov from Safet Barrier (Thrust 2) Controller (Task #3.1) Robotic Exoskeleto User-Adaptive Actuato (Thrust 1) Robotic Position Upper-Extremity $I_{r}s^{2} + B_{r}s + K_{r}$ Supervisory Controller Controlle Impedance (Task #3.2) Gravity Compensatio Models for Humar Shoulder & Elbow Adaptiv Impedance with int Kinematics & Muscle Activ Law Confidence Interva

Illustration of the wearable upper-extremit exoskeleton robot with a hybrid (parallel and serial) actuation mechanism

Broader Impact on Education

- Mentoring underrepresented undergraduate students and high school students in the local community.
- · Developing a new graduate-level course on "Adaptive and robust control."
- Outreach activities for K-12 students.

Quantification of Broader Impact

· This research has a potential to decrease the workers' likelihood of developing new MSDs or exacerbating existing MSDs, which account for 33% of all worker injury and illness cases, incurring a loss of more than \$200 billion annually.