Using Computer Vision for Precision Thinning Models in Apples

NIFA CPS 2020-01469-1022394, Start Date 1 June 2020

George Kantor, Zachary Rubinstein (Carnegie Mellon University)

Daniel Cooley (University of Massachusetts Amherst)

Challenge:

- Fruit thinning models rely on accurate fruit size measurements
- Require repeated measurements at scale in cluttered tree canopy

Automate size measurements with computer vision

Solution:

- Image fruitlets with robotdeployed cameras
- Deep learning to extract size measurements
- Innovations: active 3D modeling and search in tree canopy

Robots scan trees and measure fruitlets at scale

Scientific Impact:

- Active perception algorithms model cluttered organic scenes
- Enable use of lower cost COTS sensors without losing measurement quality

Broader Impact:

- Increase industry adoption of modeling for fruit thinning
- Reduce use of thinning chemicals (carbaryl) associated with pollinator decline
- •K-12 projects with CMU's Girls of Steel