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Introduction 
The demand for higher performance computing platforms has dramatically increased   during the last decade 
due to the continuous feature enhancement process. For instance, in automotive systems new safety features 
like `night view assist’ and `automatic emergency breaking’ require the fusion of sensor data, video processing 
and real-time warnings when an obstacle is detected on the road; in the avionics domain new applications such 
as the helmet-mounted display systems require intensive video processing capabilities. Commercial-Off-The-
Shelf (COTS) components are increasingly used in an effort to raise performance and lower production costs. 
Fast multicore CPUs and high-performance DMA peripherals are needed for servicing these new demanding 
applications. However, they are difficult to use due to problems with timing predictability and security. A 
multicore architecture is substantially different from a single core implementation in that concurrently executing 
tasks (on the parallel cores) share critical physical resources such as caches, peripherals, on-chip interconnect 
networks, etc. This extensive sharing of physical resources on critical paths can jeopardize the timing 
predictability and at times, security, of safety-critical software applications even when system resources are 
under the control of a real-time operating system. The stark reality is that without addressing these issues, high 
assurance product developments will be unable to take full advantage of emerging multicore CPUs. 

Security and Real-Time Challenges 
In safety critical and mission critical systems such as those employed in the automotive, as well as in the avionics 
and medical domains, it is important to assign applications with different requirements to different partitions 
with different criticality levels (viz. `catastrophic’, `hazardous’, `major’, `minor’ and `no effect’). Partitions should 
be isolated functionally, temporally and securely, i.e., the execution of one partition should not affect tasks in a 
different partition. Unfortunately, modern COTS architectures are not built to provide strong isolation 
guarantees. In our opinion, there are three main challenges to timing predictability and security: 

1. Shared physical resources: Multicore architectures employ sharing of several physical resources, including 
caches, main memory, communication infrastructures, power/clock frequency, etc. Resource sharing 
improves average case execution when software resource requirements are unknown, which is not the case 
in time-critical systems. On the other hand, extensive hardware resource sharing makes it extremely 
challenging to provide isolation guarantees; examples are discussed below. 

2. Multiple active components: Embedded multicore processors are moving towards more and more 
integrated platforms where CPU cores, coprocessors, DMA peripherals, etc. are implemented as a system on 
a chip (SoC). All such active components compete for access to physical shared resources and thus interfere 
with each other. All active components must be controlled to ensure safety thus greatly increasing the 
complexity of the design and certification process. In particular, to the best of our knowledge no existing 
worst-case execution time (WCET) analysis can simultaneously handle the sharing of all aforementioned 
physical resources. 

3. Integrated applications: The current reality in embedded real-time systems is that an ever-increasing 
number of software applications from multiple sources are integrated to run on a decreasing number of 
computers.  This shift from federated to integrated architectures will only accelerate with the move towards 
processors with multiple (4, 8, and more) CPU cores.  System designers can no longer have a full insight into 
the source code thus requiring active mechanisms to handle the reduced trust levels that result. 



                            
Example I: cache sharing problem for security. Shared physical resources increase the chance that important 
information can be leaked to/snooped upon by lower security level tasks. For example, in a single core chip, 
when a partition loads the last level cache, it can use it until the end of its assigned time slot and then wipe it 
before yielding the processor to another partition. This ensures that no information is leaked due to the sharing 
of the cache by multiple tasks on a single core system. This is not possible when multiple cores share the same 
cache levels, leading to several issues: 
1. Denial of service attacks: The less critical partition can deliberately interfere with the execution of high 

priority tasks by actively evicting cache lines in the shared case and thus increasing the WCET of the high 
priority task – this could result in the high priority task missing its deadlines. Furthermore, if the system 
handles overloads in a brittle way (e.g., restarting the whole computer), purposely overrunning a deadline is 
a way to impose severe damage, since typically the node will be rendered unusable for minutes. 

2. Covert channels: Potential covert channels can be created, for example, by transmitting information by 
modulating one’s cache foot-print (or any other shared resource).  By monitoring changes in the hit/miss 
rate for the high-security task in one partition can send information to lower security task in another 
partition. This can lead to a serious breach of security for the whole system. 

Example II: memory bottleneck problem for timing isolation. In a typical COTS-based system, main memory is 
implemented using one or more banks of single-port dynamic RAM. All active components compete for access 
to the single-port memory, and the implemented hardware arbitration scheme can significantly affect the delay 
experienced by each component. In particular, when a task suffers a cache miss, contention for access to main 
memory can significantly delay cache line fetches and greatly increase the WCET of the task. We performed a set 
of experiments to understand the severity of this issue. We engineered a task so that it continuously suffers 
cache misses and measured its WCET in isolation. We then added to the experiment a second copy of the task 
running on a separate core (using a separate cache) and a PCI-E peripheral using DMA to saturate main memory 
with write requests and measured the WCET increase of the task. The increase in WCET was as much as 196% 
for the task, i.e., the WCET almost tripled. Simulation results for a system with 4 cores show that a task can 
suffer a worst case execution time increase of almost 120% when interfering tasks running on other cores spend 
18% of their time performing memory accesses. Even worse, simulations with 8 cores show that a task can suffer 
a worst case execution time increase of more than 300% when interfering tasks spend only 10% of their time 
performing memory accesses. These problems are highlighted when we hear from our industry colleagues, e.g.: 
“we increasingly hear from developers that they think the current crops of multicore chips with shared cache are 
so unusable that we should just pass on them as an industry” 1. As the number of cores grows the inter-core 
network inside multi-core chips becomes another point of contention. It has been shown that traffic among 
some cores can block the traffic in and out of other unrelated cores in some inter-core networks (1). 

Outlines of Solution Approach 
The severity of the described security and real-time challenges demand prompt and concrete actions by the 
community. The complexity of the design and certification process must be greatly reduced to allow widespread 
adoption of multicore platforms in cyber-physical systems with safety critical requirements. A paradigm shift in 
the approach to the problems is required along several directions: 

1. Hardware-aware OS solutions: Application portability across different architectures is clearly required in the 
automotive market. At the same time, the software platform must control all active components in the 
system and predictably allocate physical resources.  Therefore, control mechanisms must be implemented at 
the OS/hypervisor level.  An increased attention to research in hardware-aware OS mechanisms is required.  

2. Hardware isolation mechanisms: We believe that significant improvements in system isolation could be 
obtained through small architectural modifications that would require very limited device re-engineering 
and would not significantly affect average performance. SoC integration presents both challenges and 

                                                           

1
 A direct quote from a senior avionics engineer 



opportunities. On one hand, it allows manufacturers to implement custom interconnections that can be 
even harder to analyze than existing systems. On the other hand, it opens up the possibility to insert 
``hooks” in hardware resource arbiters to let the designer control system resource allocation. New initiatives 
in the computer architecture research community to explore OS-driven resource allocation and scheduling 
mechanisms (1) (2) (3) indicate an increased sensitivity to this matter that should be foster to create multi-
core hardware that can support both throughput-oriented and real-time workloads. 

3. Integrated analyses and tool support: Both analyses and control schemes have been proposed for specific 
types of physically-shared resources. However, there is a lack of integrated early-analysis and evaluation 
frameworks and tools. In a market dominated by frequent product updates, the designer must be able to 
evaluate the effect of architectural choices well in advance of any concrete system 
implementation/integration. Solutions in this arena must take into account the challenges of a design chain 
distributed across the OEM and its multiple suppliers as well as of the multiple analytical domains included 
in a CPS (e.g. mechanical, thermal, control, scheduling, etc). A component-based approach that uses libraries 
of predefined hardware platform components is especially desirable. 

One specific research technique we would like to put forward is to create the technology for Single Core 

Equivalent (SCE) software partitions. The key idea is that the execution of a SCE partition on a multicore-based 
system is certifiably equivalent to the execution of the same partition on a single core system. Once we achieve 
this goal, large numbers of existing certified software applications developed for single core systems can be 
reused with standard single core (re)certification processes -- a monumental saving in engineering and 
certification effort. In particular, we believe the community should create challenging and representative model 
applications to guide research in the following directions: (1) isolation technologies for cross-partition timing 
interference; (2) observability management to counter covert channels; (3) integrated tool-assisted WCET 

analysis; (4) certification support for safety and security; (5) compatibility layers for porting certified single core 
software; (6) application-aware resource partitioning, isolation, coordination and performance optimization and 
finally (7) a characterization of all the sources of platform dependencies that could cause problems in the use of 
shared resources.  

Conclusions 
With the increasing demands being placed on automotive and avionics systems the move towards multicore 
architectures is inevitable. Unfortunately, the current state-of-the-art COTS components available to designers 
of such systems have serious problems with timing predictability and security. Hence, we believe that the 
community should come together to (a) characterize the true nature of these issues and (b) suggest practical 
solutions that can be adapted by the COTS component manufacturers with minor changes. One such idea (that 
of Single Core Equivalence) is presented in this paper.  We believe that it can alleviate many of the problems 
with predictability and security. But this is just a starting point and we believe that the larger research and 
industrial communities must work together to find lasting solutions to these critical issues. 
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