
The 4th NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting (2019 SaTC PI Meeting)
October 28-29, 2019 | Alexandria, Virginia

VaultDB: Efficient Query Processing
for Private Data Federations

Technique: Intermediate Cardinality
Bounds

Research Artifacts
• Open source software

releases – enable SQL
users to pick up privacy-
preserving data analytics

• Preparing pilot with
Chicago-area hospitals

Research Challenges
• How do we make ad-hoc SQL queries run

efficiently over 2+ private datastores?
• Can we exploit SQL’s declarative semantics

to speed up oblivious query processing?
• Can we generalize relational query

performance optimization to this setting?
• What trade-offs can we make to improve

query runtimes? Accuracy? Privacy?

Scientific Impact
• Discover synergies between cryptography

and DB research to make SQL-over-MPC
queries scalable.

• Generalize principles of DB design to novel
optimization opportunities for privacy-
preserving analytics

• Investigates fundamental questions about
the design of algorithms for efficient
oblivious query processing

Education and Outreach
• Formed DB+Security

Reading Group (w/Xiao
Wang)

• PI is faculty advisor for
Grad Women in Computing
@Northwestern

• Mentored two HS students
for summer 2019

Broader Impact
• Research has immediate

implications for:
• Healthcare
• Data markets
• Finance
• Public policy

1 SQL query Q

6 Query results R

Analyst Workstation

2
Query

Planner

3 SQL-over-MPC query plan

5 Secret shares of Q’s results
(1/data owner)

Private Databases

4 Data owners securely compute Q
over the union of their data

VaultDB

Add Your Logo and/or project info here
Award ID#:

VaultDB: A Private Data Federation
• Data federations let analysts query 2+

datastores as if they were a single engine.
• A private data federation queries the union of

2+ DBs s.t:
• Analyst alone learns query results
• Data owners learn nothing, store own

data locally in the clear

SELECT de.dob_year/10 decade,
COUNT(DISTINCT de.pid)

FROM demographic de, diagnosis di
WHERE di.diag = “X”

AND de.pid = di.pid
GROUP BY decade;

For example, if we join two n-tuple relations obliviously the output will be the size of the cross product
of its inputs, n2. We maintain the query’s obliviousness by padding its output with encrypted nulls, or
dummy tuples. With cascades of oblivious database operators, the cardinality of their results balloons.

We do not propose novel cryptographic primitives in this work. Rather we will create an extensible
query processing system that translates a database operator into circuits since they are the most common
abstraction for generic secure computation protocols [40, 41, 71, 74, 78, 100, 114, 147, 163, 195]. VaultDB
will use a cost-based optimizer to select efficient protocols for a given query.
Overview The proposed work will enable private data providers to pool their data for efficient querying without
revealing unauthorized information. It will do so by 1) minimizing our use of oblivious query processing; and 2)
identifying how to efficiently deploy secure computation protocols.

To realize this vision, the PI and her students will pursue four synergistic research thrusts:

● RT1: Design and implement a flexible query execution framework for private data federations that
offers novel oblivious query processing techniques and a generic interface for integrating new secure
computation protocols as they arise.
● RT2: Develop and deploy an algebra for bounding the intermediate result cardinalities of oblivious

query operators by exploiting properties of the relational model and user-provided hints.
● RT3: Build and evaluate efficient oblivious algorithms for database operators that leverage bounded

intermediate result cardinalities to reduce their complexity.
● RT4: Architect, prototype, and evaluate a cost-based query optimizer for private data federations

that generalizes the principles of relational query optimization while incorporating the execution
framework, cardinality bounds, and efficient operators into its planning decisions.

2 Background
We will now take a brief tour of core concepts that underpin VaultDB. We begin with a running example.
Running Example Throughout the text we will use an illustrative example of a researcher who is interested
in the prevalence of disease X in various age cohorts. She submits the following query to the federation:
SELECT de.dob year/10 decade,COUNT(DISTINCT de.pid) FROM demographic de, diagnosis di

WHERE di.diag = X AND de.pid = di.pid GROUP BY decade.
A conventional query optimizer would translate this query into an execution plan like the one in

Figure 2. We describe our attributes as public or secret to denote the access permitted by data providers
in a federation who are not the originators of a record. The query first filters (s) the diagnosis table for
sufferers of X, joins (�) it with the demographic table to pair patient IDs with their year of birth, and
projects (P) the year of birth to its decade. The group-by aggregate then partitions the patients by decade
counting up the distinct identifiers per bin.

decade,count(distinct pid) [n2]
P(decade = de.dob year�10, de.pid) [n2]

�de.pid=di.pid [n2]
sdiag=X [n]

diagnosis di [n]
(pid public, diag secret)

demographic de [n]
(pid public, dob year secret)

Figure 2: Initial query plan for running
example with intermediate cardinalities.

Tuples flow through the query tree bottom-up. The first oper-
ator that processes secret data is the filter on diagnosis. Hence the
filter must run obliviously, as does its parent operators. Our pro-
posed optimizer is not dependent on this initial operator ordering.

This query tree illustrates a major challenge in oblivious query
processing: intermediate result cardinality blowup. The resulting
size of each operator is shown in red. Since the size of an inter-
mediate result may reveal information about the input records of
other data providers, private data federations obliviously pad the
intermediate results of their operators to their maximum possible
size. A join of two relations, each of size n, produces n2 tuples. If
this result were passed on to another join, its output cardinality would jump to O(n3) records. Like most
database joins, the one shown here has equality predicates so this full padding will usually drastically
inflate our intermediate result sizes. This cascading effect results in monotonically increasing interme-
diate result cardinalities and, as a function of that growth, ever-decreasing performance for private data
federation queries. We will propose techniques for reducing this blowup in Section 3.2.

3

Naïve Cardinalities

creating opportunities for performance improvement in oblivious query processing. We have numerous
sources from which to learn them including:

● Table definitions: attributes have specifications for their domains and/or ranges.
● Key declarations: In relational databases, primary keys admit no duplicates. Likewise, foreign

keys–that reference values in a primary key–get their distinct value count from their primary key.
● Schema constraints: We will also use arbitrary constraints from CHECK specifications to limit the

schema’s domain and/or range by integrating them into our core statistics above. Also, the UNIQUE

constraint will give us a maximum multiplicity of one.
● Public statistics: For oblivious operators that compute on public attributes, we will query them

directly to learn their statistics. We will cache this information for frequently-accessed columns.
● User-provided bounds: One may specify Ma and Da by annotating the schema or by adding clauses

to their query that specify their maximum values (as in PiQL [9]). This may truncate query results.

decade,count(distinct pid)
Ddecade,count = 12

�di.pid=de.pid��� =min(Dde.pid, Ddi.pid) ∗Mdi.pid

.

P(decade = dob yr�10, pid)
decade ∈ [190 . . . 201], Ddecade = 12

demographic de
Dpid = �demographic�, Mpid = 1,

dob year ∈ [1900 . . . 2018]

diagnosis di
Dpid, Mpid from public PIDs

Figure 3: Example query with cardinality bounds.

Our algebra will use these sources to automatically
calculate statistics and cardinality bounds for the inter-
mediate results one database operator at a time. For
example, R �pid S would have an output cardinality of
min(DR.pid, DS.pid) ∗ (MR.pid ∗MS.pid), the maximum inter-
section set size between R.pid and S.pid times the maxi-
mum multiplicity of each joining relation, MR.pid ∗MS.pid.
We will generalize this technique for cardinality bounding
to filters, aggregates, and other operators.

We demonstrate our proposed bounded cardinality al-
gebra by continuing with our running example in Figure 3.
We start with scanning the demographic table, and its pri-
mary key is patient ID, so it has Mde.pid = 1 and Dde.pid = �de�.
The schema tells us that the range of valid birth years is
1900 to 2018. In the diagnosis table we compute primarily on the public patient identifier so we collect
statistics directly from those values. We calculate that the projection has 12 distinct values based on the
range of dob year. We next bound the output size of the join using the calculations described above. Lastly,
the aggregate will have up to 12 distinct output values based on Ddecade. We emphasize that all of these
reduced cardinalities are achieved using freely available information from the private data federation’s shared schema.
The relational model is a powerful source of information for private data federation query optimization.
Shrinkwrap Operator To reduce the intermediate result cardinalities of federation queries we need to
eliminate dummy tuples after we execute an oblivious operator. When we delete dummy tuples from an
intermediate result, we say that we shrinkwrap the data. We do this by obliviously sorting (in O(n log n)
time for n tuples [76]) the intermediate results by the dummy tag and then truncating them. The
shrinkwrap algorithm was created in [77] and variants of it are in [126, 128, 197].
Research Outcomes and Evaluation In this research thrust, we will 1) create an algebra for identifying
the upper cardinality bound on a given query operator using publicly-available statistics on its input
data; 2) design and implement a scalable shrinkwrap algorithm for obliviously eliminating dummies
with the new cardinality bounds and integrate it with the query planner; and 3) evaluate the scalability
of shrinkwrapping over datasets of increasing size with varying percentages of dummies validating our
O(n log n) overhead hypothesis for the optimizer cost model in Section 3.4; and 4) validate the performance
improvement of operators with bounded cardinalities both individually and cumulatively in a query tree
over a diverse query workload from the HealthLNK data network and TPC-H. We will quantify how this
cardinality reduction lowers the overhead of oblivious query processing.

3.3 RT3: Efficient Oblivious Algorithms for Database Operators
We now turn our attention to creating more efficient full-oblivious operators for private data federation
queries. This is challenging because in the absence of the bounded cardinalities in Section 3.2, oblivious

8

Algebraic Card. Bounds

Jennie Rogers, jennie@northwestern.edu

