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Problem
The potential widespread use of autonomous vehicles has
raised numerous safety concerns involving the reliabil-
ity of the control algorithms that drive these vehicles.
In particular, these algorithms control vehicle maneuvers,
wherein faulty control can potentially endanger human life
and property.

Project Goals
Our work seeks to develop verified maneuver regulation
algorithms to characterize the types of maneuvers that can
be controlled in a safe and stable manner [1, 2, 6–9, 12–14].

Goal #1:
Construct guaranteed maneuver regulation control algo-
rithms and characterize the space of maneuvers that are
controllable given “driving conditions.”

Goal #2:
Transition from model level to augmenting the overall au-
tonomous vehicle design.

Goal #3:
Lift ideas from a single vehicle to multiple co-operating ve-
hicles.

Evaluation Testbed:
Evaluate each step of our work using the Ninja Car plat-
form.
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Model ẋ(t) = f(x,u),
Maneuver: (x(s),y(s),z(s))

x(s)
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For each trajectory, we construct associated Lyapunov and
barrier functions. Sampling the trajectory space densely
yields a database of maneuvers that incorporate trajectory
information along with associated feedback law, Lyapunov
and barrier functions [2, 10, 15].
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We have synthesized guaranteed control algorithms to regu-
late maneuvers of autonomous vehicles by bridging the gap
between the capabilities of formal control design schemes
and the practical details involved in translating them to re-
alistic driving scenarios.

Outreach and Education
We have recently published two detailed surveys on model-
based verification of CPS [3] and another on using CPS ver-
ification techniques for medicel devices [11].
We are integrating our research into a series of education
and outreach activities that will ensure the broader impacts
of this project. The Ninja Car testbed will be disseminated
as a “do-it-yourself” project for interested students and
enthusiasts under $300. The testbed is already being used in
project-oriented classes offered to undergraduate students
in engineering. The testbed is also being used in focused
graduate classes on building autonomous vehicles from the
ground up.

Experimental Testbed

The Ninja Car is a 1
8 -scale model of a car that has been modified for

autonomous operation using on-board sensing and computation.
The API for the vehicle’s control and sensing algorithms provide the
inputs available for many levels of controller synthesis.

The Ninja Car platform is outfitted with advanced state feedback
sensors, including an in-house visual-inertial simultaneous local-
ization and mapping (SLAM) system, swing arm encoders, high-
precision optical wheel encoders, augmented structural components,
and an Intel NUC. The mast with attached pan-tilt unit as pictured is
removable.

Multi-Vehicle Design
We have developed a coarse characterization of the ad-
missible maneuver and trajectory space as well as the
road condition for cooperative driving [4, 5].

For a sharp turn on a loose ground, a single vehicle may
allow large lateral displacement for maximum stability
while we may have to bound the displacement in the
multi-vehicle situation. This requires ranking and pruning
maneuvers based on certain computed bounds.
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We have used deep reinforcement learning and solving for
Nash equilibria to resolve this challenge. In the framework
of game theory, we have shown it is possible to coopera-
tively merge vehicles in realistic physical simulations.
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