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Introduction

We developed a method for verifying Continuous-time
Stochastic Hybrid Systems (CTSHSs) using the Mori-
Zwanzig model reduction method, whose behaviors are
specified by Metric Interval Temporal Logic (MITL)
formulas. By partitioning the state space of the CTSHS
and computing the optimal transition rates between
partitions, we provide a procedure to both reduce a
CTSHS to a Continuous-Time Markov Chain (CTMC),
and the associated MITL formulas defined on the CTSHS
to MITL specifications on the CTMC. We prove that an
MITL formula on the CTSHS is true (or false) if the
corresponding MITL formula on the CTMC is robustly true
(or false) under certain perturbations. In addition, we
propose a stochastic algorithm to complete the
verification.
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Figure 1. A roadmap for the work
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System Formulation

The configuration space Q x (Q of a Continuous-time
Stochastic Hybrid System (CTSHS) is the Cartesian
product of a set of discrete locations Q = {q4, ..., q,} and a
continuous state space Q = R%. In a location g € Q, the
continuous state x € () evolves by a stochastic differential
equation
dx(t) = f(q;,x)dt + g(q;, x)dwy,

where w; Is the standard white noise. It reduces to an
ordinary differential equation when g(q;,x) = 0.

Meanwhile, the system may switch to another location g;

and reset the continuous state to z by
(Clj;Z) = hj(qi,x),

and the transition rate is given by 7;(g;, x).

Let 7(t) = (q(t), x(t)) be a trajectory of the system, which
obeys the time-evolving probabillity distribution F(t, g, x).
Then F(t, g, x) satisfies the Fokker-Planck equation
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where L Is the Fokker-Planck operator.
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Similar to the Fokker-Planck equation for jump-diffusion
process, the four terms on the right hand side stands for
“drift”, “diffusion”, “jlump-out” and “jump-in”, respectively.

Metric Interval Temporal Logic

Generally, MITL is a decidable continuous-time extension
of Linear Temporal Logic. To use MITL to describe the
behavior of the trajectories of the CTSHS, we define an
observable y on the system by

y@I© =Y | y@0FEadr,

Q
qEQ
where 7 is a trajectory of the system and y(q, x) IS a given

weight function.

The syntax of MITL Is given recursively by
Yu=T[L|lyi~¢ | Y |lYAd YV oYUy pd [YRg )P
where y; IS an observable of the system, ce R, 0 <a <
b<owand~€{><< =}

The satisfaction relation between a trajectory 7 and an
MITL formula ¢ is defined inductively by
TET THEL
T Eyi~c < |y(@)](0)~c
TE QS THEQD
TEOANY S TEPandT EY
TEPpVY S TEDPOrTEY
T F ¢U(a,b)l/) < dt € (Cl, b), (T, t) = l/)
and Vs < t,(1,5) F ¢
T E Ry & (VE, (1,t) F ) or
(3t € (a,b),(1,t) E ¢
and Vs < t, (1,s) E ),
where (t,t) Is the suffix of T starting from t.

Model Reduction

1. Reducing the Dynamics

Let S = {s4, 55, ..., 5;} be a partition of the continuous state
space (1, namely,

1. Each s; Is nonempty, open and simply-connected

2. u(Q\ Uiz s;) =0

3. sins;=0Qforanyi #j

Treating each partition as a discrete state, we can derive
a Continuous-time Markov Chain (CTMC). The probability
measures on the CTSHS and the CTMC are correlated
by the projection P:m(Q x Q) » m(Q X S)

pij = PF(q;,x) = f F(q;, x)dx,

5j

and the injection R:m(Q X Q) » m(Q X S)
l
F(qi,x) = Rp = z pijUs;(x),
Jj=1

where Us; (x) is the uniform probability distribution on s;.

To achieve the best approximation of the CTSHS, the
transition rate matrix of the CTMC Is given by
A =PLR

Specifically, the transition rate from state ij to state ab is

)
f f(t,q;,x)dx, ifa=1i
aSjﬂaSb

Agpij = - ,

\Ju(sj) S j
fori,a=1,..,nandj,b=1,..,1, where I;_« .. x)es, = 1
if h,(t,q,x) € s, and 0 otherwise.
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Figure 2. Model reduction error.
2. Reducing the MITL Formulas

As shown In Figure 2, the model reduction error of
observable y attime t Is

Ay(t) = 2f v(q,x)(elt — Re4*PYF(0,q, x)dx]|.

qeQ "%
When the system is a-contractive for some a > 0, namely
there is £ = 1 such that the inequality holds

ZL velts(q, x)dx| < pe™@ ZL v8(q, x)dx

qeQ qeQ
for any L; function satisfying Y ¢q J, 6(q,x)dx =0, the
model reduction error is bounded by

B
Ay(t) <A+ ﬁ—,
(04

where

A= v(q,x)(I — RP)F(0,q,x)dx,
2:)

t=0

B=sup » f v (g, %)(L — RPLYF (¢, ¢, x)dx,
geo &

are the reduction error for P and L respectively. They
converge to 0 as we refine the partition.

This implies that, to verify an MITL formula ¢ on the
trajectory t of the CTSHS, it suffices to verify the MITL
formula y derived by replacing each y(t) >c with

y(t) >c+A+%B and each y(t) <c with y(t) <c+ A+
GB

a

on the trajectory 7' of the CTMC.

Algorithm

Given the reduced CTMC C, the initial observation y, and
a reduced MITL formula vy, the statistical verification

algorithm  A%192Y™ (C,y,, ¢, @, B) , together with the
validity analysis, is presented by the following pseudo
codes. We assume a priori knowledge of a unique
iInvariant distribution of the reduced Markov process.
Input:

d1, 0, Indifference parameters,

C input CTMC

yV invariant observation,

Yo Initial observation,

Y MITL formula,
a, [ error bounds.

Ok wWwhE

Output:

» Yes, No, Unknown
Ensures:

> Plout=Yes |7 Y] < a
» Plout=No |T'Ey] <«

Viel|lt' —7|| <6 ;2TEY
= <
>P[out Unknown N T <a+pf

Procedure:
1. Use close (y(T),yi“V ,%“, 62) to find T such that

|y (T) — y™|| < 6,
2. Find Asuchthatvt € [0,T],t' € [t—A,t+ Al N[0, T]
1. y;(t)—c> % = y;(t') >0
2. yi(t)—c< % = y;(t") <0

268 ,

o lyi@®) —cl <=2 = lyit) —cl < 64
Partition [0, T] into disjoint intervals of length 2A
For each t middle of an interval, let

1. res; « c/lfl/?’ (yi(t),c + %,a';ﬁ')

2. res,; « cflfl/g (yi(t),c — %,a',ﬁ')

Use resq, res,, and step 2 to categorize the intervals
Construct timed automaton T, 4p USINg steps 1 & 5
I* Lang (T 4p ) contains the exact signal and more */

1. if Lang(Tc4p) N Lang(Ty) = @ then return No

2. if Lang (TC, Ap) N Lang (T_ﬂ/,) = @ then return Yes
3. return Unknown
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Conclusions and Future Work

In this work, we proposed a framework of using metric
Interval temporal logic formulas to describe the behavior
of Continuous-time Stochastic Hybrid Systems and a
method of using the Mori-Zwanzig model reduction
method to verify the temporal logic formulas. Specifically,
We proved that the problem of verifying the temporal
logic formulas on the CTSHS can be transformed to the
problem of verifying a slightly stronger formulas on the
CTMC and proposed a sampling-based method to finish
the verification. We have implemented this method In a
Billiard problem to verify the reachabillity property. In the
future, we will implement this method to more real-world
applications, such as powertrain systems.
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