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Conclusions and Future Work 
In this work, we proposed a framework of using metric 
interval temporal logic formulas to describe the behavior 
of Continuous-time Stochastic Hybrid Systems and a 
method of using the Mori-Zwanzig model reduction 
method to verify the temporal logic formulas. Specifically, 
We proved that the problem of verifying the temporal 
logic formulas on the CTSHS can be transformed to the 
problem of verifying a slightly stronger formulas on the 
CTMC and proposed a sampling-based method to finish 
the verification. We have implemented this method in a 
Billiard problem to verify the reachability property. In the 
future, we will implement this method to more real-world 
applications, such as powertrain systems. 

System Formulation 
The configuration space 𝑄𝑄 × Ω  of a Continuous-time 
Stochastic Hybrid System (CTSHS) is the Cartesian 
product of a set of discrete locations 𝑄𝑄 = 𝑞𝑞1, … , 𝑞𝑞𝑛𝑛  and a 
continuous state space Ω = ℝ𝑑𝑑. In a location 𝑞𝑞 ∈ 𝑄𝑄, the 
continuous state 𝑥𝑥 ∈ Ω evolves by a stochastic differential 
equation 

𝑑𝑑𝑥𝑥 𝑡𝑡 = 𝑓𝑓 𝑞𝑞𝑖𝑖 , 𝑥𝑥 𝑑𝑑𝑡𝑡 + 𝑔𝑔 𝑞𝑞𝑖𝑖 , 𝑥𝑥 𝑑𝑑𝑤𝑤𝑡𝑡 , 
where 𝑤𝑤𝑡𝑡 is the standard white noise. It reduces to an 
ordinary differential equation when 𝑔𝑔 𝑞𝑞𝑖𝑖 , 𝑥𝑥 = 0. 
 
Meanwhile, the system may switch to another location 𝑞𝑞𝑗𝑗 
and reset the continuous state to 𝑧𝑧 by 

𝑞𝑞𝑗𝑗 , 𝑧𝑧 = ℎ𝑗𝑗 𝑞𝑞𝑖𝑖 , 𝑥𝑥 , 
and the transition rate is given by 𝑟𝑟𝑗𝑗 𝑞𝑞𝑖𝑖 , 𝑥𝑥 . 
 
Let 𝜏𝜏 𝑡𝑡 = (𝑞𝑞 𝑡𝑡 , 𝑥𝑥(𝑡𝑡)) be a trajectory of the system, which 
obeys the time-evolving probability distribution 𝐹𝐹(𝑡𝑡, 𝑞𝑞, 𝑥𝑥). 
Then 𝐹𝐹(𝑡𝑡, 𝑞𝑞, 𝑥𝑥) satisfies the Fokker-Planck equation 
𝜕𝜕𝐹𝐹(𝑡𝑡, 𝑞𝑞𝑖𝑖 , 𝑥𝑥)

𝜕𝜕𝑡𝑡
= 𝐿𝐿 𝐹𝐹 𝑡𝑡, 𝑞𝑞𝑖𝑖 , 𝑥𝑥 = −�

𝜕𝜕
𝜕𝜕𝑥𝑥𝑎𝑎

(𝑓𝑓𝑎𝑎 𝑞𝑞𝑖𝑖 , 𝑥𝑥 𝐹𝐹(𝑡𝑡, 𝑞𝑞𝑖𝑖 , 𝑥𝑥))
𝑑𝑑

𝑎𝑎=1

+
1
2
��

𝜕𝜕2

𝜕𝜕𝑥𝑥𝑎𝑎𝜕𝜕𝑥𝑥𝑏𝑏
(𝑔𝑔𝑎𝑎 𝑞𝑞𝑖𝑖 , 𝑥𝑥 𝑔𝑔𝑏𝑏 𝑞𝑞𝑖𝑖 , 𝑥𝑥 𝐹𝐹(𝑡𝑡, 𝑞𝑞𝑖𝑖 , 𝑥𝑥))

𝑑𝑑

𝑏𝑏=1

𝑑𝑑

𝑎𝑎=1

−�𝑟𝑟𝑗𝑗 𝑞𝑞𝑖𝑖 , 𝑥𝑥 𝐹𝐹(𝑡𝑡, 𝑞𝑞𝑖𝑖 , 𝑥𝑥))
𝑛𝑛

𝑗𝑗=1

+ � 𝑟𝑟𝑖𝑖 𝑞𝑞𝑗𝑗 ,𝑦𝑦 𝐹𝐹(𝑡𝑡, 𝑞𝑞𝑗𝑗 ,𝑦𝑦))
ℎ𝑖𝑖(𝑞𝑞𝑗𝑗,𝑦𝑦)
=(𝑞𝑞𝑖𝑖,𝑥𝑥)

 

where 𝐿𝐿 is the Fokker-Planck operator. 
 

Introduction 
We developed a method for verifying Continuous-time 
Stochastic Hybrid Systems (CTSHSs) using the Mori-
Zwanzig model reduction method, whose behaviors are 
specified by Metric Interval Temporal Logic (MITL) 
formulas.  By partitioning the state space of the CTSHS 
and computing the optimal transition rates between 
partitions, we provide a procedure to both reduce a 
CTSHS to a Continuous-Time Markov Chain (CTMC), 
and the associated MITL formulas defined on the CTSHS 
to MITL specifications on the CTMC. We prove that an 
MITL formula on the CTSHS is true (or false) if the 
corresponding MITL formula on the CTMC is robustly true 
(or false) under certain perturbations. In addition, we 
propose a stochastic algorithm to complete the 
verification.  

Similar to the Fokker-Planck equation for jump-diffusion 
process, the four terms on the right hand side stands for 
“drift”, “diffusion”, “jump-out” and “jump-in”, respectively. 

 

Metric Interval Temporal Logic 
Generally, MITL is a decidable continuous-time extension 
of Linear Temporal Logic. To use MITL to describe the 
behavior of the trajectories of the CTSHS, we define an 
observable 𝑦𝑦 on the system by 

𝑦𝑦 𝜏𝜏 𝑡𝑡 = �� 𝛾𝛾 𝑞𝑞, 𝑥𝑥 𝐹𝐹 𝑡𝑡, 𝑞𝑞, 𝑥𝑥 𝑑𝑑𝑥𝑥
Ω𝑞𝑞∈𝑄𝑄

, 

where 𝜏𝜏 is a trajectory of the system and 𝛾𝛾(𝑞𝑞, 𝑥𝑥) is a given 
weight function.  
 
The syntax of MITL is given recursively by  
𝜓𝜓 ∷= ⊤  ⊥  𝑦𝑦𝑖𝑖~𝑐𝑐𝑖𝑖   ¬𝜓𝜓  𝜓𝜓 ∧ 𝜙𝜙  𝜓𝜓 ∨ 𝜙𝜙  𝜓𝜓U(𝑎𝑎,𝑏𝑏)𝜙𝜙 |𝜓𝜓R(𝑎𝑎,𝑏𝑏)𝜙𝜙 
where 𝑦𝑦𝑖𝑖 is an observable of the system, 𝑐𝑐 ∈ ℝ, 0 ≤ 𝑎𝑎 <
𝑏𝑏 ≤ ∞ and ~ ∈ >, <,≤,≥ .  
 
The satisfaction relation between a trajectory 𝜏𝜏 and an 
MITL formula 𝜙𝜙 is defined inductively by 

𝜏𝜏 ⊨ ⊤                           𝜏𝜏 ⊭ ⊥ 
𝜏𝜏 ⊨ 𝑦𝑦𝑖𝑖~𝑐𝑐 ⟺ 𝑦𝑦 𝜏𝜏 0 ~𝑐𝑐  
𝜏𝜏 ⊨ ¬𝜙𝜙 ⟺ 𝜏𝜏 ⊭ 𝜙𝜙 
𝜏𝜏 ⊨ 𝜙𝜙 ∧ 𝜓𝜓 ⟺ 𝜏𝜏 ⊨ 𝜙𝜙 and 𝜏𝜏 ⊨ 𝜓𝜓 
𝜏𝜏 ⊨ 𝜙𝜙 ∨ 𝜓𝜓 ⟺ 𝜏𝜏 ⊨ 𝜙𝜙 or  𝜏𝜏 ⊨ 𝜓𝜓 
𝜏𝜏 ⊨ 𝜙𝜙U(𝑎𝑎,𝑏𝑏)𝜓𝜓 ⟺ ∃𝑡𝑡 ∈ (𝑎𝑎, 𝑏𝑏), (𝜏𝜏, 𝑡𝑡) ⊨ 𝜓𝜓  

and ∀𝑠𝑠 < 𝑡𝑡, 𝜏𝜏, 𝑠𝑠 ⊨ 𝜙𝜙  
𝜏𝜏 ⊨ 𝜙𝜙R(𝑎𝑎,𝑏𝑏)𝜓𝜓 ⟺ ∀𝑡𝑡, 𝜏𝜏, 𝑡𝑡 ⊨ 𝜓𝜓  or 

(∃𝑡𝑡 ∈ (𝑎𝑎, 𝑏𝑏), 𝜏𝜏, 𝑡𝑡 ⊨ 𝜙𝜙 
                   and ∀𝑠𝑠 ≤ 𝑡𝑡, 𝜏𝜏, 𝑠𝑠 ⊨ 𝜓𝜓), 

where (𝜏𝜏, 𝑡𝑡) is the suffix of 𝜏𝜏 starting from 𝑡𝑡. 
 

Model Reduction 
1. Reducing the Dynamics 
Let 𝑆𝑆 = 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑙𝑙  be a partition of the continuous state 
space Ω, namely, 
1.  Each 𝑠𝑠𝑖𝑖 is nonempty, open and simply-connected 
2.  𝜇𝜇 Ω\⋃ 𝑠𝑠𝑖𝑖𝑙𝑙

𝑖𝑖=1 = 0 
3.  𝑠𝑠𝑖𝑖 ∩ 𝑠𝑠𝑗𝑗 = ∅ for any 𝑖𝑖 ≠ 𝑗𝑗 
 
Treating each partition as a discrete state, we can derive 
a Continuous-time Markov Chain (CTMC). The probability 
measures on the CTSHS and the CTMC are correlated 
by the projection 𝑃𝑃:𝑚𝑚 Q × Ω → 𝑚𝑚 Q × S  

𝑝𝑝𝑖𝑖𝑗𝑗 = 𝑃𝑃𝐹𝐹 𝑞𝑞𝑖𝑖 , 𝑥𝑥 = � 𝐹𝐹 𝑞𝑞𝑖𝑖 , 𝑥𝑥 𝑑𝑑𝑥𝑥
𝑠𝑠𝑗𝑗

, 

and the injection 𝑅𝑅:𝑚𝑚 Q × Ω → 𝑚𝑚 Q × S  

𝐹𝐹(𝑞𝑞𝑖𝑖 , 𝑥𝑥) = 𝑅𝑅𝑝𝑝 = �𝑝𝑝𝑖𝑖𝑗𝑗𝐔𝐔𝑠𝑠𝑗𝑗(𝑥𝑥)
𝑙𝑙

𝑗𝑗=1

, 

where 𝐔𝐔𝑠𝑠𝑗𝑗 𝑥𝑥  is the uniform probability distribution on 𝑠𝑠𝑗𝑗. 
 
To achieve the best approximation of the CTSHS, the 
transition rate matrix of the CTMC is given by 

𝐴𝐴 = 𝑃𝑃𝐿𝐿𝑅𝑅 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

 
 
 

 

Specifically, the transition rate from state 𝑖𝑖𝑗𝑗 to state 𝑎𝑎𝑏𝑏 is 

𝐴𝐴𝑎𝑎𝑏𝑏𝑖𝑖𝑗𝑗 =

� 𝑓𝑓 𝑡𝑡, 𝑞𝑞𝑖𝑖 , 𝑥𝑥 𝑑𝑑𝑥𝑥,
𝜕𝜕𝑠𝑠𝑗𝑗∩𝜕𝜕𝑠𝑠𝑏𝑏

if 𝑎𝑎 = 𝑖𝑖

1
𝜇𝜇(𝑠𝑠𝑗𝑗)

� 𝑟𝑟𝑎𝑎 𝑡𝑡, 𝑞𝑞𝑖𝑖 , 𝑥𝑥 𝐈𝐈ℎ𝑎𝑎 𝑡𝑡,𝑞𝑞𝑖𝑖,𝑥𝑥 ∈𝑠𝑠𝑏𝑏𝑑𝑑𝑥𝑥,
𝑠𝑠𝑗𝑗

else
 

for 𝑖𝑖, 𝑎𝑎 = 1, … ,𝑛𝑛 and 𝑗𝑗, 𝑏𝑏 = 1, … , 𝑙𝑙, where 𝐈𝐈ℎ𝑎𝑎 𝑡𝑡,𝑞𝑞𝑖𝑖,𝑥𝑥 ∈𝑠𝑠𝑏𝑏 = 1 
if ℎ𝑎𝑎 𝑡𝑡, 𝑞𝑞, 𝑥𝑥 ∈ 𝑠𝑠𝑏𝑏, and 0 otherwise. 
 
 
 
 
 
 
2. Reducing the MITL Formulas 
As shown in Figure 2, the model reduction error of 
observable 𝑦𝑦 at time 𝑡𝑡 is 

Δ𝑦𝑦 𝑡𝑡 = �� 𝛾𝛾 𝑞𝑞, 𝑥𝑥 (𝑒𝑒𝐿𝐿𝑡𝑡 − 𝑅𝑅𝑒𝑒𝐴𝐴𝑡𝑡𝑃𝑃)𝐹𝐹 0, 𝑞𝑞, 𝑥𝑥 𝑑𝑑𝑥𝑥
Ω𝑞𝑞∈𝑄𝑄

. 

When the system is 𝛼𝛼-contractive for some 𝛼𝛼 > 0, namely 
there is 𝛽𝛽 ≥ 1 such that the inequality holds 

�� 𝛾𝛾𝑒𝑒𝐿𝐿𝑡𝑡𝛿𝛿 𝑞𝑞, 𝑥𝑥 𝑑𝑑𝑥𝑥
Ω𝑞𝑞∈𝑄𝑄

≤ 𝛽𝛽𝑒𝑒−𝛼𝛼 �� 𝛾𝛾𝛿𝛿 𝑞𝑞, 𝑥𝑥 𝑑𝑑𝑥𝑥
Ω𝑞𝑞∈𝑄𝑄

 

for any 𝐿𝐿1 function satisfying ∑ ∫ 𝛿𝛿 𝑞𝑞, 𝑥𝑥 𝑑𝑑𝑥𝑥Ω = 0𝑞𝑞∈𝑄𝑄 , the 
model reduction error is bounded by 

Δ𝑦𝑦 𝑡𝑡 ≤ Α +
𝛽𝛽𝛽𝛽
𝛼𝛼

, 
where 

𝐴𝐴 = �� 𝛾𝛾 𝑞𝑞, 𝑥𝑥 (𝐼𝐼 − 𝑅𝑅𝑃𝑃)𝐹𝐹 0, 𝑞𝑞, 𝑥𝑥 𝑑𝑑𝑥𝑥
Ω𝑞𝑞∈𝑄𝑄

, 

𝛽𝛽 = sup
t≥0

 �� 𝛾𝛾 𝑞𝑞, 𝑥𝑥 𝐿𝐿 − 𝑅𝑅𝑃𝑃𝐿𝐿 𝐹𝐹 𝑡𝑡, 𝑞𝑞, 𝑥𝑥 𝑑𝑑𝑥𝑥
Ω

,
𝑞𝑞∈𝑄𝑄

 

are the reduction error for 𝑃𝑃 and 𝐿𝐿 respectively. They 
converge to 0 as we refine the partition. 
 
This implies that, to verify an MITL formula 𝜙𝜙 on the 
trajectory 𝜏𝜏 of the CTSHS, it suffices to verify the MITL 
formula ψ  derived by replacing each 𝑦𝑦 𝑡𝑡 > 𝑐𝑐  with 
𝑦𝑦 𝑡𝑡 > 𝑐𝑐 + Α + 𝛽𝛽𝛽𝛽

𝛼𝛼
 and each 𝑦𝑦 𝑡𝑡 < 𝑐𝑐 with 𝑦𝑦 𝑡𝑡 < 𝑐𝑐 + Α +

𝛽𝛽𝛽𝛽
𝛼𝛼

 on the trajectory 𝜏𝜏′ of the CTMC. 
 

Algorithm 
Given the reduced CTMC 𝐶𝐶, the initial observation 𝑦𝑦0 and 
a reduced MITL formula 𝜓𝜓 , the statistical verification 
algorithm 𝐴𝐴𝛿𝛿1,𝛿𝛿2,𝑦𝑦inv 𝐶𝐶, 𝑦𝑦0,𝜓𝜓,𝛼𝛼,𝛽𝛽 , together with the 
validity analysis, is presented by the following pseudo 
codes. We assume a priori knowledge of a unique 
invariant distribution of the reduced Markov process.  
Input: 
1.  𝛿𝛿1, 𝛿𝛿2 indifference parameters, 
2.  𝐶𝐶 input CTMC  
3.  𝑦𝑦inv invariant observation, 
4.  𝑦𝑦0 initial observation, 
5.  𝜓𝜓 MITL formula, 
6.  𝛼𝛼,𝛽𝛽 error bounds. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 

Output: 
 Yes, No, Unknown 
Ensures: 
 𝑃𝑃 out = Yes | 𝜏𝜏′ ⊭ 𝜓𝜓 ≤ 𝛼𝛼 
 𝑃𝑃 out = No  | 𝜏𝜏′ ⊨ 𝜓𝜓 ≤ 𝛼𝛼 

 𝑃𝑃 out = Unknown �∀𝜏𝜏 • 𝜏𝜏′ − 𝜏𝜏 ≤ 𝛿𝛿1 ⇒ 𝜏𝜏 ⊨ 𝜓𝜓
∀𝜏𝜏 • 𝜏𝜏′ − 𝜏𝜏 ≤ 𝛿𝛿1 ⇒ 𝜏𝜏 ⊭ 𝜓𝜓 ≤ 𝛼𝛼 + 𝛽𝛽 

Procedure: 
1. Use 𝑐𝑐𝑙𝑙𝑐𝑐𝑠𝑠𝑒𝑒 𝑦𝑦(𝑇𝑇), 𝑦𝑦inv , 3𝛼𝛼

4
, 𝛿𝛿2  to find 𝑇𝑇 such that 

𝑦𝑦 𝑇𝑇 − 𝑦𝑦inv ≤ 𝛿𝛿2 
2. Find Δ such that ∀𝑡𝑡 ∈ 0,𝑇𝑇 , 𝑡𝑡′ ∈ 𝑡𝑡 − Δ, 𝑡𝑡 + Δ ∩ [0,𝑇𝑇] 

1. 𝑦𝑦𝑖𝑖 𝑡𝑡 − 𝑐𝑐 > 𝛿𝛿1
3
⇒ 𝑦𝑦𝑖𝑖 𝑡𝑡′ > 0 

2. 𝑦𝑦𝑖𝑖 𝑡𝑡 − 𝑐𝑐 < 𝛿𝛿1
3
⇒ 𝑦𝑦𝑖𝑖 𝑡𝑡′ < 0 

3. 𝑦𝑦𝑖𝑖 𝑡𝑡 − 𝑐𝑐 < 2𝛿𝛿1
3
⇒ 𝑦𝑦𝑖𝑖 𝑡𝑡′ − 𝑐𝑐 < 𝛿𝛿1 

3. Partition 0,𝑇𝑇  into disjoint intervals of length 2Δ 
4. For each 𝑡𝑡 middle of an interval, let 

1. 𝑟𝑟𝑒𝑒𝑠𝑠1 ← 𝒜𝒜1
𝛿𝛿1/3 𝑦𝑦𝑖𝑖 𝑡𝑡 , 𝑐𝑐 + 𝛿𝛿1

3
,𝛼𝛼′,𝛽𝛽′  

2. 𝑟𝑟𝑒𝑒𝑠𝑠2 ← 𝒜𝒜1
𝛿𝛿1/3 𝑦𝑦𝑖𝑖 𝑡𝑡 , 𝑐𝑐 − 𝛿𝛿1

3
,𝛼𝛼′,𝛽𝛽′  

5. Use 𝑟𝑟𝑒𝑒𝑠𝑠1, 𝑟𝑟𝑒𝑒𝑠𝑠2, and step 2 to categorize the intervals 
6. Construct timed automaton 𝑇𝑇𝐶𝐶,𝐴𝐴𝐴𝐴 using steps 1 & 5 

/* 𝐿𝐿𝑎𝑎𝑛𝑛𝑔𝑔 𝑇𝑇𝐶𝐶,𝐴𝐴𝐴𝐴  contains the exact signal and more */ 
1. 𝐢𝐢𝐢𝐢 𝐿𝐿𝑎𝑎𝑛𝑛𝑔𝑔 𝑇𝑇𝐶𝐶,𝐴𝐴𝐴𝐴 ∩ 𝐿𝐿𝑎𝑎𝑛𝑛𝑔𝑔 𝑇𝑇𝜓𝜓 = ∅   𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐫𝐫𝐭𝐭𝐭𝐭𝐫𝐫𝐫𝐫𝐭𝐭 No 
2. 𝐢𝐢𝐢𝐢 𝐿𝐿𝑎𝑎𝑛𝑛𝑔𝑔 𝑇𝑇𝐶𝐶,𝐴𝐴𝐴𝐴 ∩ 𝐿𝐿𝑎𝑎𝑛𝑛𝑔𝑔 𝑇𝑇¬𝜓𝜓 = ∅ 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝐫𝐫𝐭𝐭𝐭𝐭𝐫𝐫𝐫𝐫𝐭𝐭 Yes 
3. 𝐫𝐫𝐭𝐭𝐭𝐭𝐫𝐫𝐫𝐫𝐭𝐭 Unknown 
 Figure 1.  A roadmap for the work 

Figure 2. Model reduction error. 
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