Visual Tactile Neural Fields for Active Digital Twin Generation

Lead PI: Philip Dames, Temple University

PI: Monroe Kennedy, Stanford University

PI: Kostas Daniilidis, University of Pennsylvania

Motivation and Broader Impact

- Goals
 - Model visual and physical characteristics of individual objects
 - between interaction object expected and a robot/sensors
- Uses
 - Create digital twins, e.g., archiving, tailored interaction
 - Downstream tasks, e.g., dexterous manipulation

Neural Fields and DenseTact Design

- Neural Fields
 - Use neural network to characterize fields in volumetric space (e.g., density, color)
 - State-of-the-art method in vision-based scene reconstruction
 - We create the Visual Tactile Neural Field (VTNF)
 - Unified representation that can be updated using vision and touch
- DenseTact
 - Optical-tactile sensor

Proposed Methodology

Thrust 1

- Generate a VTNF model from sensor data
 - Mathematical models
 - Neural network architecture
 - Algorithmic pipeline
- Sensor package
 - DenseTact
 - calibrated using library of known surfaces
 - Use surface measurements (over time) to extract shape, texture, friction,
 - RGB camera
 - Combine DenseTact with color imagery to extract other material properties

Thrust 2

- Optimize VTNF creation
 - Minimize number of measurements
 - Select sequence of senses and sensing locations
- Characterize uncertainty in current model
 - Use ensemble of VTNFs to characterize entropy
 - Use entropy to select next best sensing sequence for vision and touch

VTNF ensemble for entropy guided sensing

DenseTact depth sensing example

Experimental setup (4k camera, depth Realsense, DenseTact)

