CPS: Breakthrough: Collaborative Research: WARP: Wide Area assisted Resilient Protection

PROBLEM/CONTEXT

One wrong move by a protective relay during stressed operation can spell disaster for the power grid; E.g. 2003 NE Blackout.

OVERARCHING GOAL

Can we <u>detect</u> and swiftly <u>correct</u> relay misoperations to avert an impending cascade?

KEY IDEAS

- Supervise relay operation using Dynamic State Estimation (DSE) and extract event "fingerprints" from wide-area measurement sets and energy function components;
- Analytical approach based on energy functions to supervise relay operations associated with transmission lines;
- If relay operation is deemed "correct", do nothing. If relay operation is "incorrect", then correct (reverse) relay operation by switching in/out the system component; Resilience achieved by recovery from misoperations.

MAIN DEVELOPMENTS

- Use the Particle Filter (PF) as the primary tool for Dynamic State Estimation (DSE).
- Use estimated dynamic states to:

- construct components of the system's energy functions which are very rich in dynamic information at the component level (such as generators, transmission lines, transformers, and loads)

--detect and flag "events" that might be detrimental to system stability

--also used to forecast states in over a short time-horizon for look-ahead capabilities.

CHALLENGES

- Speed Can we be "fast" enough? (order of a few cycles)
- Decisions Central versus Local

www.PosterPresentations.com

- Communication Channels Latencies and their impact
- Wide area measurements Distinguishing "bad data" and noise from genuine system disturbances
- Developing reliable supervisory signals for relays based on DSE and energy function methods

(1) R. Kavasseri 2) N. R. Chaudhuri and (3) S. Brahma

(1) North Dakota State University, (2) The Pennsylvania State University (3) New Mexico State University

