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Airborne networking utilizes direct flight-to-to-flight
communication for flexible information sharing, safe maneuvering, and
coordination of time-critical missions. It is challenging because of the
high mobility, stringent safety requirements, and uncertain airspace
environment.

This project uses a co-design approach that exploits the mutual
benefits of networking and decentralized mobility control in an
uncertain heterogeneous environment. The approach departs from the
usual perspective that views physical mobility as communication
constraints, communication as constraints for decentralized mobility
control, and uncertain environment as constraints for both. Instead,
we proactively exploit the constraints, uncertainty, and new structures
with information to enable high-performance designs.

The features of the co-design such as scalability, fast response,
tractability, and robustness to uncertainty advance the core CPS
science on decision-making for large-scale networks under
uncertainty.
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• We completed the development of both the 2-dimentioanl (2-D) and 
the 3-D smooth turn (ST) modeling framework for fixed-wing aircraft, 
which can serve as a design and evaluation foundation for future 
ANs.

• By placing the random mobility models under the framework of 
random switching systems, we completed general online and offline 
estimation methods for these systems, using Expectation-
Maximization and other methods. 

• We completed the 
development of layered 
structures to reduce data 
transmission load required to 
reach consensus for UAV 
networks. 

• We developed event-triggered 
control with guaranteed lower 
bounds  to reduce the 
communication and control 
cost. 

Testbed DevelopmentTestbed Development
• We enhanced the testbed of UAV-based on-demand communication

system by redesigning the whole system in TX2 and improving the
hardware and software endurance.

• We extended the capability to beyond visual line of control and other
UAV applications.Uncertainty Exploited ControlUncertainty Exploited Control

Practical Networking to Facilitate Fast 
Decentralized Mobility Control

Practical Networking to Facilitate Fast 
Decentralized Mobility Control

• We completed the development of scalable uncertainty evaluation
method that breaks the curse of dimensionality in uncertainty
evaluation. Published standalone Matlab tools for the general public
to use this new uncertainty evaluation method.

• Built on the scalable uncertainty evaluation method that we
developed in previous years, we completed the development of
optimal control and reinforcement-learning based control for
systems subject to high dimensional uncertainties.

• The solution was also extended to address the uncertainty
quantification needs in dynamic graphical games and general
random switching systems.

• We equipped random mobility models with sense and avoidance
protocols protocols to capture the flexible, variable, and uncertain
movement patterns of UASs subject to separation safety
constraints.

• We analyzed statistical properties including stationary location
distribution and stationary inter-vehicle distance distributions,
which leads to collision collision probability and airspace capacity
for an airspace of dense UAV operations.

System dynamics: 𝒙 𝑨 𝒂 𝒙 ∑ 𝑩 𝒖

Expected cost:   𝐽 𝒙 0 ,𝒖 ,𝒖 𝐸 𝑟 𝒙,𝒖 ,𝒖 𝑑𝑡

𝐸 𝒙𝑻𝑸𝒊𝒙 𝒖 𝑹𝒊 𝒖 𝑑𝑡

Value function:  𝑉 𝒙 𝑡
𝐸 𝒙𝑻𝑸𝒊𝒙 ∑ 𝒖 𝑹𝒊 𝒖 𝑑𝜏

Optimal control policy:  𝒖 ∗ argm𝑖𝑛
𝒖

𝐽 𝒙 0 ,𝒖 ,𝒖

Impact of sensing distance and flexibility

Comparison of multiple sense and avoidance 
protocols

• We applied  the event-triggered solution to graphical games.


