CPS: Medium: Collaborative Research: Wireless Magnetic Millibot Blood Clot Removal and Navigation in 3-D Printed Patient-Specific Phantoms using Echocardiography

Challenges:

Award \#1932572 Award Date: 09/11/2019

- How to design Miniature Magnetic Rotating Swimmers (MMRS) optimized for navigation within the vascular system and blood clot disruption?
- How to control and track magnetic swimmers during the navigation?

Solutions:

- CFD is used to compute the swimming characteristics of MMRS.
- Echocardiography imaging is a safe potential solution for tracking a MMRS inside a patient.
- Al can be used to estimate the position of the swimmer from ultrasound data.
- New control methods for rotating swimmer were designed and experimentally validated.
- Capacitors connected in series with the electromagnets improve energy efficiency and reduce the size of the CPS.

Award \#1932572

Houston Methodist, PI: Dr. Dipan Shah, CO-PI: Dr. Mohamad Ghosn University of Houston, PI: Dr. Aaron Becker, CO-PI: Dr. Julien Leclerc

2.5 mm

Magnetic swimmer and magnetic manipulator

MMRS performing a rapid agile maneuver

Scientific Impact:

- This project aims to replace a traditional catheter by a unique cyberphysical system.
- This project will provide technical solutions to design and control MMRS for the treatment of pulmonary embolisms.
-The effectiveness of this new device is tested via in-vitro experiments.

Broader Impact:

- MMRS steered by a CPS that combines precision control, high fidelity imaging and surgeon-in-the-loop could transform the practice and outcomes for a variety of disorders.
- Funding is used to increase participation of women and minorities in science and engineering, mentor summer interns, conduct K-12 outreach, and help STEM high school teachers design curriculum through our ongoing participation in Pumps \& Pipes with Houston ISD.

