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Design Workflow for CPS
» Modeling

Requirements/specifications
Components
System architecture
Assurance
» Design
Specs = Components + Architecture
» Synthesis
Design = Implementation
» Verification
Design = ? = Specs
Implementation = ? = Design
» Assurance
Design + Implementation: safe?

Analysis and Verification Virtual Evaluation
Environment Environment




Heterogeneous Languages & Tools

» Many different modeling languages, both general-purpose and
domain-specific, with many supporting tools

» Heterogeneous interfaces between tools — automation is
lacking

» Common architecture modeling languages and paradigms:
Architecture Analysis & Design Language (AADL) [l
SysML [2]
Colored Petri Nets (CPN) [
Goal Structuring Notation (GSN) [4]

» Example supporting tools:
Functional Modeling Compiler (FMC) [l
CPN Tools [¢]
RESOLUTE ]



Existing Workflow Description Languages

» Business Process Model and Notation (BPMN) [8!

Generic, natural language models commonly used for
documenting business processes

Does not address interfacing problems — difficult to automate
» Project Worker P!

Packages common, repeatable operations into Engineering
Automation Objects (EAOs)

Highly generic, but conceptual ideas are not implemented and
validated

» Formalism Transformation Graph (FTG) [°]

Describes how heterogeneous modeling languages are related
to one another with Model Transformations



Assurance-based Learning-enabled CPS
(ALC) Toolchain

» Modeling

System Architecture / SysML

» Construction
Data collection
Training

Evaluation
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ALC Design Workilow

» Specialized for LEC development

» Consists of Tasks and Activities
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ALC Model of Data Generation

» Tasks: design experiment & configure simulation

» Activity: execute experiment to collect data
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ALC Model of L

L C Training

» Tasks: configure training & evaluate against test set

» Activity: perform training with selected ML framework

Supervised Learning

Reinforcement Learning
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ALC Model of Performance Evaluation

» Tasks: design test scenarios & analyze results
» Activity: execute experiment & analysis
» Same experiment model as data collection
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ALC Worktlow Modeling Language

» Jobs have:
Inputs and Outputs
Activities
Initializers

» Data flow from
Outputs to Inputs

» Process flow to
control iteration
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ALC Workflow Job Model

» Example LEC Evaluation job
» Two inputs, one output, and an initializer

» One evaluation activity model selected
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ALC Composed Worktlow Diagram

» Composed workflow for LEC Construction

» Iteration block update models in the Data Collection job
based on the results from the LEC Evaluation job
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Worktlow Executor

» Two parts:

Model interpreter — Parses workflow diagram to build a JSON
object description of the workflow

Job executor — Uses Gradlel'!l to build a task
dependency Directed Acyclic Graph (DAG) and execute each
task

» Provides API for that allows workflow models to interact
with activity models

» APl used when defining lteration and Initialization scripts



Monitoring Worktlow Progress

» Status monitor indicates Pending, Finished, or Error for each
activity in the workflow

» If an Error occurs, workflow executor automatically skips
all activities which finished successfully before the error

Execution Job Activity Status
RL WF Pending
RL Exploration Finished

RLTrainingLEC1 Finished

LEC Evaluation Pending

Dep_AM_Tracking Pending




Example 1:
Reinforcement Learning & Evaluation

» Two step workflow:

Output an LEC trained with Reinforcement Learning
activity model

Input trained LEC to Evaluation activity model and output
evaluation results

» No iteration, and final output is unused

<< WorkflowJob >> << WorkflowJob >>
RL Exploration LEC Evaluation

(j:u'ned P M LEC O Result p




Example 2:
Hyperparameter Search

» lteratively train an LEC with a Supervised Learning
activity model

» Use iteration logic to find optimal hyperparameters via
simple grid-search

<< WorkflowJob 5> R from workflow_data import workflow_data, parameter_output

SL Model Trainin ’ ) . ) .
9 ¢ # Workflow job name we are interested in, model parameter names, and grid-search parameters

TRAINING _JOB_NAME = "SL Model Training"
OPTIMIZER_PARAM_NAME = "optimizer"

L ]
"
"
]
n
]
| ]
]
"
EPOCHS PARAM NAME = "epochs" .
OPTIMIZER LIST = ["sgd", "adam", "rmsprop"] .
EPOCHS_LIST = [2, 4, 6, 8] .
"
"
| ]
"
]
"
"
| ]
| ]
| ]
n
| ]
L]
"
]

def main():

# Based on the current iteration number, find location in grid-search
iteration _count = workflow data.get iteration()

optimizer idx = iteration count / len(EPOCHS LIST)

epochs_idx = iteration_count % len(EPOCHS_LIST)

# Update training parameters for all activities selected in this job
parameter outputs[TRAINING JOB NAME][ACTIVITY NAME][OPTIMIZER PARAM NAME] = OPTIMIZER_LIST[optimizer_idxﬂ
parameter_outputs[TRAINING JOB_NAME] [ACTIVITY_NAME] [EPOCHS_PARAM_NAME] = EPOCHS_ LIST[epochs_idx] M




Example 2:

Results
Learning Number of Epochs
Optimizer g, 4 6 3
SGD 1.057 0.996 0.951 0.904
Adam 0.057 0.032 0.022 0.011
RMSProp 0.147 | 2.485 | 0.010 | 0.010




Example 3:
Complex Development Workilow

» Combines iterative LEC Construction process with

Hyperparameter optimization

» LEC with minimal loss is output from hyperparameter
search to Assurance Monitor training and Evaluation
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Recent & Future Improvements

» Recent improvements
Parallel execution is supported
Reduced scripting requirements — additional model elements
Hierarchical workflows
Gradle replaced with optimized Python-based implementation

» Future improvements
Full-support for conditional branches in the workflow
Post-processing & user notification of workflow results
Library of workflow templates (eg. Hyperparameter search)
Improved debugging
Integrate additional activities such as verification & assurance



Summary

» CPS involves complex, iterative design workflows

» Many domain-specific models and tools with
heterogeneous interfaces

» Existing automation between tools is minimal

» Extensible workflow language & executor allows for
automation between tools

» Tools publicly available on CPS-VO at:
https://cps-vo.org/group/ALC
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