Workflow Automation for Cyber Physical
System Development Processes

Charles Hartsell, Nagabhushan Mahadevan, Harmon Nine,
Abhishek Dubey, Ted Bapty, Gabor Karsai

Supported by DARPA under FA8750-18-C-0089

Roadmap

» Typical CPS design workflow

» Heterogeneous models & tools for CPS
» ALC Toolchain workflow

» Workflow modeling language

» Examples

» Conclusions

Design Workflow for CPS
» Modeling

Requirements/specifications
Components
System architecture
Assurance
» Design
Specs = Components + Architecture
» Synthesis
Design = Implementation
» Verification
Design = ? = Specs
Implementation = ? = Design
» Assurance
Design + Implementation: safe?

Analysis and Verification Virtual Evaluation
Environment Environment

Heterogeneous Languages & Tools

» Many different modeling languages, both general-purpose and
domain-specific, with many supporting tools

» Heterogeneous interfaces between tools — automation is
lacking

» Common architecture modeling languages and paradigms:
Architecture Analysis & Design Language (AADL) [l
SysML [2]
Colored Petri Nets (CPN) [
Goal Structuring Notation (GSN) [4]

» Example supporting tools:
Functional Modeling Compiler (FMC) [l
CPN Tools [¢]
RESOLUTE]

Existing Workflow Description Languages

» Business Process Model and Notation (BPMN) [8!

Generic, natural language models commonly used for
documenting business processes

Does not address interfacing problems — difficult to automate
» Project Worker P!

Packages common, repeatable operations into Engineering
Automation Objects (EAOs)

Highly generic, but conceptual ideas are not implemented and
validated

» Formalism Transformation Graph (FTG) [°]

Describes how heterogeneous modeling languages are related
to one another with Model Transformations

Assurance-based Learning-enabled CPS
(ALC) Toolchain

» Modeling

System Architecture / SysML

» Construction
Data collection
Training

Evaluation

Experiment

Campaign

<< Campaign >>
Campaign

Parameter | Values.
®,
40,
. pipe_posx | 50,
- =
n

)

Controllers
(LEC and Conventional Alternatives)

Software Components
and Assemblies

. . -
Supervised Learning
<< P 2> Mission
Pl
e Train LEC1 with RL.
= o
[em——
T - o
— = T
BATCH_SIZE .] num_episodes | 1 << AssemblyModel <<RLAgent»>
[y —
EPOCHS s ’ g
useruL_FRACTN | 1 ey — ¢
e s
A FmAcTn | 07
Loss mse L Parameter Value M
T
'OPTIMIZER ‘adam upload false. Trained LEC Model ‘
emes | aca or =1 pan | orzsmn ‘
upload taise. E ‘ record e
path_prefix IVER_LEC2 ui false.
Jec_assurance_montor | aise nescess e e
mi_library pylorch-semseq unpause_tmeout | 15
Sy | |~

» Verification/Validation/Assurance - Evidence

fzimuthal Heading ird)

LEC Prediicted vs Ideal Heading

e

P LeC reactad eading

Y;\V\ A
N

20000 4DDOD_ 6UDDO BOOO 100000
Simulation Time (ms)

Depth Lrrar (m)

150[— Degln Ervor

Pitch Control and Depth Error Signals
nond

[

6 0000 40000 60000 80000 100000
Time (ms)

Pitch Command

£90 ar reduces speed 10 keen a safe distance with the iead cor

ALC Design Workilow

» Specialized for LEC development

» Consists of Tasks and Activities

(1) System Modeling) '3 Verification & Validation
/' Message /
[/ g ; Iterate Design — /
&\. Architecture | ./ Assembly | . [VeI’IfICTtlon } Asgurance
——— — ases
/ Component |y Models /7 Models Tools /
Library / ‘ ;
+ H 1
h2 ‘Campaign

v

LEC Construction
Data Generation

Supervised Learning Performance Evaluation
Design) ./" Configure | Configure Test Set Collect / Analyze
Experiment / Simulation ,/ Training / Evaluation Evaluation Data Performance /

\ i Adjust Parameters P
A 4 \
& Gather Additional Data
Reinforcement Learning
Design

) Configure
Experiment | ’

Simulation \ .
g Y Exploration
/Design Reward |

e y Learning
onfigure
Function / y Learning Algorithm /

/

ALC Model of Data Generation

» Tasks: design experiment & configure simulation

» Activity: execute experiment to collect data

Experiment

Mission

o << Envi

LEC1

« Follow pipes using

ironment >>
Environ

:

ment

L 4 ¥
<< AssemblyModel >>

IVER

..........

Ve

<< Result >>
SimulationData

<< PostProcess >>
PostProcess

<< Params >>

Campaign

<< Campaign >>

ExecutionParams
Parameter Value
upload false
fs_path_prefix iver2_gooddata
record true
gui false
headless true
timeout 2500
unpause_timeout | 15
termination_topic | /alc/stopsim
num_episodes 1

<< Params >>
random_seed

Parameter

Value

random_seed

27168

Campaign

Parameter Values

30,

40,
pipe_posx 50,

60,

70

-
pipe_pos_side |

ALC Model of L

L C Training

» Tasks: configure training & evaluate against test set

» Activity: perform training with selected ML framework

Supervised Learning

Reinforcement Learning

|
¥

USEFUL_FRACTION 1

<< LEC_Model >>

Params >>
RLParams
<< Params >>
Params Parameter Value E << Environment 53}
.. Environme:
testing 0 Mission — —
Parameter Value << TrainingData >> num_episodes | 300 Train LEC1 with RL i
TrainingData - T i
BATCH_SIZE 16 |
EPOCHS 5 << Params >> H
ExecParams ¢
<< AssemblyModel >>
ER

TRAIN_FRACTION 07 LEC_Model Parameter Value NS
69 R

LOSS mse upload false

fs_path_prefix iver2simrl i
OPTIMIZER adam |_prel

record true Ty
HETRICS i S Trained_LEC_Mo

Result gui false E——

upload false

headless true

path_prefix IVER_LEC-2 E

unpause_timeout | 15

lec_assurance_monitor | false

mi_library pytorch-semseg

termination_topic | /alc/stopsim

timeout 15000000

ALC Model of Performance Evaluation

» Tasks: design test scenarios & analyze results
» Activity: execute experiment & analysis
» Same experiment model as data collection

LEC Predicted vs Ideal Heading Pitch Control and Depth Error Signals
0.4 — Ideal Heading 1.50|—— pepth Error — Pitc: Command 0.6
. . Pitch Error
—— LEC Predicted Heading

0.3 1.25 —— Desired Pitch 0.5
° —— Current Pitch
© 0.2 1.00 0.4
o £
£ 0.1 T 0.75 0.3
S S
[
z 0.0 5 0.50 0.2
] =
£ 01 § 0.25 0.1
£
N ~0-2 0.00 0.0
< V4

-0.3
-0.25 \ﬁi -0.1
-0.4) '] ' ' ' ' '
20 40 60 80 100 0 20 40 60 80 100
Simulation Time (s) Simulation Time (s)

Pitch Command

ALC Worktlow Modeling Language

» Jobs have:
Inputs and Outputs
Activities
Initializers

» Data flow from
Outputs to Inputs

» Process flow to
control iteration

Job
Block)

<< WorkflowJob >>
LEC Evaluation

AM Result

Data
Flows

Process
Flows

[teration
Block

» Workflow lteration logic
defined in lteration Blocks

] 1
[1
repeat | +

O

g

Activities
Block

Initializer

<< Jobs_Input >>
LEC

<< Jobs_Output >>
Result

<< Activities >>
Activities

E

<< Init_Value >> (G
Set Control LEC

ALC Workflow Job Model

» Example LEC Evaluation job
» Two inputs, one output, and an initializer

» One evaluation activity model selected

O e e e e m m m m m m m m m momm
n
)
¢ : << Init_Value >> (2
‘! Set Control LEC
'
1
<< WorkflowJob >> [
LEC Evaluation : E
AM Resultp 1 v E
1 {
- i
. ! v
1
<< Jobs_Input >> .
1 . .
'y YT R — - << Activities >>
: | q
. -
‘. : Group Activities
: : DataCollection [None << Jobs_Output >>
| .
2 Dep_AM_Multi Obstacle [N x I— Result
' : | AM_Obstacle »
' Testi AL
1 : - | 'Dep_AM_Test
" " |¥'Dep_AM_Tracking
" << Jobs_Input >> I
1 LEC SN L e
Y
b
%
-

ALC Composed Worktlow Diagram

» Composed workflow for LEC Construction

» Iteration block update models in the Data Collection job
based on the results from the LEC Evaluation job

<< WorkflowJob >> << WorkflowJob >> << WorkflowJob >>
Data Collection Supervised Learning LEC Evaluation
D Dsta > TrsiningD LEC) LEC D Result p

Repeat_Check

Worktlow Executor

» Two parts:

Model interpreter — Parses workflow diagram to build a JSON
object description of the workflow

Job executor — Uses Gradlel'!l to build a task
dependency Directed Acyclic Graph (DAG) and execute each
task

» Provides API for that allows workflow models to interact
with activity models

» APl used when defining lteration and Initialization scripts

Monitoring Worktlow Progress

» Status monitor indicates Pending, Finished, or Error for each
activity in the workflow

» If an Error occurs, workflow executor automatically skips
all activities which finished successfully before the error

Execution Job Activity Status
RL WF Pending
RL Exploration Finished

RLTrainingLEC1 Finished

LEC Evaluation Pending

Dep_AM_Tracking Pending

Example 1:
Reinforcement Learning & Evaluation

» Two step workflow:

Output an LEC trained with Reinforcement Learning
activity model

Input trained LEC to Evaluation activity model and output
evaluation results

» No iteration, and final output is unused

<< WorkflowJob >> << WorkflowJob >>
RL Exploration LEC Evaluation

(j:u'ned P M LEC O Result p

Example 2:
Hyperparameter Search

» lteratively train an LEC with a Supervised Learning
activity model

» Use iteration logic to find optimal hyperparameters via
simple grid-search

<< WorkflowJob 5> R from workflow_data import workflow_data, parameter_output

SL Model Trainin ’) .) .
9 ¢ # Workflow job name we are interested in, model parameter names, and grid-search parameters

TRAINING _JOB_NAME = "SL Model Training"
OPTIMIZER_PARAM_NAME = "optimizer"

L]
"
"
]
n
]
|]
]
"
EPOCHS PARAM NAME = "epochs" .
OPTIMIZER LIST = ["sgd", "adam", "rmsprop"] .
EPOCHS_LIST = [2, 4, 6, 8] .
"
"
|]
"
]
"
"
|]
|]
|]
n
|]
L]
"
]

def main():

Based on the current iteration number, find location in grid-search
iteration _count = workflow data.get iteration()

optimizer idx = iteration count / len(EPOCHS LIST)

epochs_idx = iteration_count % len(EPOCHS_LIST)

Update training parameters for all activities selected in this job
parameter outputs[TRAINING JOB NAME][ACTIVITY NAME][OPTIMIZER PARAM NAME] = OPTIMIZER_LIST[optimizer_idxﬂ
parameter_outputs[TRAINING JOB_NAME] [ACTIVITY_NAME] [EPOCHS_PARAM_NAME] = EPOCHS_ LIST[epochs_idx] M

Example 2:

Results
Learning Number of Epochs
Optimizer g, 4 6 3
SGD 1.057 0.996 0.951 0.904
Adam 0.057 0.032 0.022 0.011
RMSProp 0.147 | 2.485 | 0.010 | 0.010

Example 3:
Complex Development Workilow

» Combines iterative LEC Construction process with

Hyperparameter optimization

» LEC with minimal loss is output from hyperparameter
search to Assurance Monitor training and Evaluation

<< WorkflowJob >>
Assurance Monitor

<< WorkflowJob >>
Data Collection

<< WorkflowdJob >>
Supervised Learning

P New DatD LEC

4

A H
. | i check
repeat | !

R 4

&

HyperParameter Search

9 Data AM

|

<< WorkflowdJob > >
LEC Evaluation

AM Result

Update and Retrain

check

1

Recent & Future Improvements

» Recent improvements
Parallel execution is supported
Reduced scripting requirements — additional model elements
Hierarchical workflows
Gradle replaced with optimized Python-based implementation

» Future improvements
Full-support for conditional branches in the workflow
Post-processing & user notification of workflow results
Library of workflow templates (eg. Hyperparameter search)
Improved debugging
Integrate additional activities such as verification & assurance

Summary

» CPS involves complex, iterative design workflows

» Many domain-specific models and tools with
heterogeneous interfaces

» Existing automation between tools is minimal

» Extensible workflow language & executor allows for
automation between tools

» Tools publicly available on CPS-VO at:
https://cps-vo.org/group/ALC

References

[I] P.H. Feiler, B. Lewis, S.Vestal, and E. Colbert,An Overview of the SAE Architecture Analysis & Design

Language (AADL) Standard: A Basis for Model-Based Architecture-Driven Embedded Systems Engineering.
Boston, MA: Springer US, 2005, pp. 3—15.

[2] OMG. OMG Systems Modeling Language (OMG SysML),Version 1.5,2017

[3] K.Jensen and L. M. Kristensen, Coloured Petri Nets - Modelling and Validation of Concurrent Systems.
Springer, 2009.

[4] Tim Kelly and Rob Weaver.The goal structuring notation—a safety argument notation. In Proceedings
of the dependable systems and networks 2004 workshop on assurance cases, page 6. Citeseer, 2004.

[5] A. Canedo and J. H. Richter, “Architectural design space exploration of cyber-physical systems using the
functional modeling compiler;” Procedia CIRP, vol. 21, pp. 4651, 2014.

[6] A.V.Ratzer, L.Wells, H. M. Lassen, M. Laursen, J. F. Qvortrup, M. S. Stissing, M.Westergaard, S. Christensen,
and K. Jensen, CPN Tools for Editing, Simulating, and Analysing Coloured Petri Nets. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 450—462.

[7] Gacek, A., Backes,]., Cofer, D., Slind, K., & Whalen, M. (2014). Resolute: an assurance case language for
architecture models. ACM SIG Ada Letters, 34(3), 19-28.

[8] OMG, “Business Process Model and Notation (BPMN),Version 2.0,”
https://www.omg.org/spec/BPMN/2.0/PDF, Object Management Group, 201 I.

[9] R. Maier; S. Unverdorben, and M. GePp,“Efficient implementation of task automation to support
multidisciplinary engineering of cps,” in 2018 IEEE 14th International Conference on Automation Science
and Engineering (CASE). IEEE, 2018, pp. 1388-1393.

[10] S. Mustafiz, J. Denil, L. L ucio, and H.Vangheluwe,“The ftg+pm framework for multi-paradigm modelling: An
automotive case study,” in Proceedings of the 6th International Workshop on Multi-Paradigm Modeling,
2012, pp. 13-18.

[I'1] https://gradle.org/

