
Future of Cyber-Physical Systems
(security/resilience)

Saman Zonouz
Associate Professor, Georgia Tech
School of Cybersecurity and Privacy (SCP)
School of Electrical and Computer Engineering (ECE)

Future of CPS Workshop, NSF CPS PI Meeting 2022

Outline (focused on resilience/security)

• Important research challenges
• Exciting opportunities for CPS research
• Lessons learned from the past
• Ideas for tech-transfer initiatives

2

Predictive Situational Awareness

• Online monitoring of the CPS operation to
identify potential cybersecurity incidents

• Extensive work on transitioning IT-like real-time
monitoring solutions to CPS domain (e.g., mount
IMUs to monitor the motion)

• Not always useful in practice due to physics
momentum and inertia – chase.com vs Tesla

• “Ahead-of-Time alerts” are required to provide
time for decision-making on response action
selection and its enforcement (potentially in
physical components - time-consuming)

3

… … future state exploration (ongoing) … …

Current Concrete Execution
State

(i<5) ∧ (10<i)

M
ai

nt
ai

ne
d

Ti
m

e
G

ap

Execution PathPerformance Optimization
• Symbolic Execution (state lumping)
• Satisfiability Checking (SMT solvers)
• Runtime Reachability (refinement)

JAT Verification [NDSS, ACSAC]

Unsafe state

Time to select
optimal response

Physics-Aware Software Analysis

• Semantic gap (disconnect) between software concepts
and physical process concepts

• Nowadays, software analysis tools completely ignore
underlying physical dynamics
– reverse engineering, vulnerability assessment, hardening

(e.g., patching, CFI)
• All algorithmic vulnerabilities are overlooked
– as opposed to conventional SW vuls (UAF, BoF, …)

• The potential safety consequences of individual SW
vulnerabilities are unknown
– similarly for attackers, “what value should I overwrite

following a heap overflow exploitation?”

5

Reversing Control Semantics [MobiSys, DSN]

6

[30] C. H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang, and D. Xu,
“Securing real-time microcontroller systems through customized mem-
ory view switching,” in Network and Distributed Systems Security

Symp.(NDSS), 2018.

[31] T. Kim, C. H. Kim, H. Choi, Y. Kwon, B. Saltaformaggio, X. Zhang, and
D. Xu, “Revarm: A platform-agnostic arm binary rewriter for security
applications,” in Proceedings of the 33rd Annual Computer Security

Applications Conference. ACM, 2017, pp. 412–424.

[32] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Poly-
morphic worm detection using structural information of executables,”
in International Workshop on Recent Advances in Intrusion Detection.
Springer, 2005, pp. 207–226.

[33] C. Kwon, W. Liu, and I. Hwang, “Security analysis for cyber-physical
systems against stealthy deception attacks,” in American Control Con-

ference (ACC), 2013. IEEE, 2013, pp. 3344–3349.

[34] A. Lakhotia, M. D. Preda, and R. Giacobazzi, “Fast location of similar
code fragments using semantic’juice’,” in Proceedings of the 2nd ACM

SIGPLAN Program Protection and Reverse Engineering Workshop.
ACM, 2013, p. 5.

[35] J. Lee, T. Avgerinos, and D. Brumley, “Tie: Principled reverse engineer-
ing of types in binary programs.” in NDSS, 2011.

[36] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data
structures from binary execution,” 2010.

[37] Y. Mo, E. Garone, A. Casavola, and B. Sinopoli, “False data injection
attacks against state estimation in wireless sensor networks,” in Decision

and Control (CDC), 2010 49th IEEE Conference on. IEEE, 2010, pp.
5967–5972.

[38] M. Muench, D. Nisi, A. Francillon, and D. Balzarotti, “Avatar 2: A multi-
target orchestration platform,” in Workshop on Binary Analysis Research

(colocated with NDSS Symposium)(February 2018), BAR, vol. 18, 2018.

[39] E. Network and I. S. A. (ENISA). (2011) Protecting industrial control
systems recommendations for Europe and Member States. https://www.
enisa.europa.eu/.

[40] Quarkslab, “Lief: library for instrumenting executable files; available at
https://lief.quarkslab.com/,” 2017-2018.

[41] M. D. Raj, I. Gogul, M. Thangaraja, and V. S. Kumar, “Static gesture
recognition based precise positioning of 5-dof robotic arm using fpga,”
in Trends in Industrial Measurement and Automation (TIMA), 2017.
IEEE, 2017, pp. 1–6.

[42] D. Rescue, “Ida pro disassembler,” 2006.

[43] J. Rrushi, H. Farhangi, C. Howey, K. Carmichael, and J. Dabell, “A
quantitative evaluation of the target selection of havex ics malware
plugin,” in Industrial Control System Security (ICSS) Workshop, 2015.

[44] B. Saltaformaggio, Z. Gu, X. Zhang, and D. Xu, “Dscrete: Automatic
rendering of forensic information from memory images via application
logic reuse.” in USENIX Security Symposium, 2014, pp. 255–269.

[45] A. L. Sangeetha, B. Naveenkumar, A. B. Ganesh, and N. Bharathi,
“Experimental validation of pid based cascade control system through
scada–plc–opc and internet architectures,” Measurement, vol. 45, no. 4,
pp. 643–649, 2012.

[46] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley, “Native x86 decompila-
tion using semantics-preserving structural analysis and iterative control-
flow structuring,” in Proceedings of the USENIX Security Symposium,
vol. 16, 2013.

[47] D. Shelar, P. Sun, S. Amin, and S. Zonouz, “Compromising security
of economic dispatch in power system operations,” in Dependable Sys-

tems and Networks (DSN), 2017 47th Annual IEEE/IFIP International

Conference on. IEEE, 2017, pp. 531–542.

[48] M. Simulink, “Simulation and model-based design,” 2005.

[49] A. Slowinska, T. Stancescu, and H. Bos, “Howard: A dynamic excavator
for reverse engineering data structures.” in NDSS, 2011.

[50] O. Sokolsky, S. Kannan, and I. Lee, “Simulation-based graph similarity,”
in International Conference on Tools and Algorithms for the Construc-

tion and Analysis of Systems. Springer, 2006, pp. 426–440.

[51] W. Starbuck and M. Farjoun, Organization at the limit: Lessons from

the Columbia disaster. John Wiley & Sons, 2009.

[52] S. Subramanian, M. Berzish, V. Ganesh, and O. Tripp, “A solver for a
theory of string and bit-vectors,” in Proceedings of the 39th International

Conference on Software Engineering Companion. IEEE Press, 2017,
pp. 124–126.

[53] P. Sun, R. Han, M. Zhang, and S. Zonouz, “Trace-free memory
data structure forensics via past inference and future speculations,”
in Proceedings of the 32nd Annual Conference on Computer Security

Applications. ACM, 2016, pp. 570–582.
[54] TechNavio. (2014) Global industrial control systems (ics)

security market 2014-2018. https://www.marketresearchreports.com/
technavio/global-industrial-control-systems-ics-security-market%C2%
A02014-2018.

[55] M. Vujošević-Janičić, M. Nikolić, D. Tošić, and V. Kuncak, “Software
verification and graph similarity for automated evaluation of students
assignments,” Information and Software Technology, vol. 55, no. 6, pp.
1004–1016, 2013.

[56] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,” arXiv preprint arXiv:1708.06525, 2017.

[57] O. Yuschuk, “Ollydbg,” 2007.
[58] J. Zeng, Y. Fu, K. A. Miller, Z. Lin, X. Zhang, and D. Xu, “Obfuscation

resilient binary code reuse through trace-oriented programming,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &

communications security. ACM, 2013, pp. 487–498.

APPENDIX

Figure 11 shows a high-level Simulink [48] block diagram
of the algorithm.

����

��

�

����

���

�

�

��

�

	

��������

�

�

�

�

����	
�������

����	
�������

���

������

����

�

����

��

����

��

�����

��

����

�

����

�

����

��

�����

��

����

�

�

�

�

�

Fig. 11: High-level block diagram of a sample embedded CPS control
algorithm (Kalman filter). MISMO will map algorithmic logic and
parameters of the diagram to their corresponding binary-level control
flows and memory variables, respectively.

���

Authorized licensed use limited to: Rutgers University. Downloaded on September 27,2021 at 00:35:25 UTC from IEEE Xplore. Restrictions apply.

PLC Controller

Low-Level Disassembled Binary Code

Kalman Filtering Algorithm

❓

Human-Assisted Intrusion Response

• Existing CPS security focuses on prevention (hardening) and
monitoring (attack detection)
– almost no emphasis on cyber-physical R&R

• Fully automated R&R is too complex
– selection of optimal response policies including both cyber and

physical actuation is even harder
• Promising solutions (e.g., SIEMs) to enable operators to

make correct decisions (outage management)
• Next step: human-assisted R&R capabilities

– provide operators with a list of ‘relevant’ potential R&R
countermeasures for confirmation

– learning (cost functions) by observing operators passively to
imitate them later actively

7

Domain-Specific AI for Security

• Almost all AI models are optimized for computer vision
(e.g., ImageNet competitions)
– not always tuned for non-image process/software data

• Often used blindly for security purposes
– process data anomaly/attack detection, binary

decompilation, code similarity (bug discovery)
• Not serving domain-specific requirements
– testing data could/should come from a maliciously-

designed different attack – lack of robustness
– e.g., sys-wide anomaly detection w/o diagnostics

• Robustness is a more difficult problem in security
– malicious players involved with different attack vectors

8

AI-Powered Side Channel Analysis
[CCS]

9[1] Genkin, et al. "ECDSA key extraction from mobile devices via nonintrusive physical side channels." CCS 2016.
[2] Nazari, et al. "Eddie: Em-based detection of deviations in program execution." ISCA 2017.

adversary who knows that a side-channel monitor is in use.
Our attack uses a carefully-crafted assembly-level malware
injection to produce a side-channel signal that can evade de-
tection by a side-channel monitor. We exploit vulnerabilities
of the data-driven models used in side-channel monitoring,
finding adversarial programs which behave maliciously but
evade detection. To facilitate reproduction of our approach
and results (in contrast to prior work), we have made our code
open source1.

We summarize our main contributions as follows:
• We present a novel attack highlighting the design-level

vulnerabilities of physical side-channel monitors to ad-
versarial examples.

• We present a methodology for crafting such adversarial
attacks on side-channel monitors, discussing how we
approach the related challenges to create stealthy and
functional malware.

• We evaluate our attack using the popular ARM Cortex-
M processor on various control programs and control
attacks. We show that our attack approach can find an
evading sample in all cases.

2 Background

Physical Side-Channels. Physical side-channels refer to
physical phenomena produced as a side-effect of system oper-
ations in digital circuits. Specifically, the execution of instruc-
tions as well as data read and write cause CMOS components
in the digital circuits to switch on and off. This creates vary-
ing currents and voltages. Such varying current and voltage
values can be observed by looking at the voltage fluctuations
in the power consumption in the circuits. Such voltage fluc-
tuations, called power side-channel signals, can be captured
by measuring the voltage at the VCC pins of a digital chip
(e.g., a micro-processor). Executing different instructions or
transferring different data values across a data bus create dif-
ferent power side-channel signal patterns. The signal patterns
are also affected by noise in the circuits. Nevertheless, power
signals can be used to infer system execution within a chip.
There are other physical side-channels such as electromag-
netic (EM), acoustic, and thermal side-channels, however in
this paper we focus mainly on power side-channel signals.

Physical Side-Channel Monitors. Physical side-channel
monitors have been employed both in academia [22, 32, 39]
and industry [3] to monitor the security of a system. The main
advantage of physical side-channel monitors compared to tra-
ditional software-based monitors is that they are air-gapped,
meaning that they are implemented externally to the moni-
tored system. This provides isolation and a separate attack
surface, reducing the number of available attack vectors.

1https://anonymous.4open.science/r/AdvML-SideChannel-
F667/README.md

Training

Monitoring

2. Train Model

3. Query Model

1. Data Acquisition

4. Detect Malicious Behavior

Side-Channel Monitoring System

Capturing Side-
Channel Signal

CPU

10100111010
10101101010
00100101000
10101011010
01001001001
01010100101
1010110011
101010111

ControllerPhysical
System

Figure 1: A side-channel monitor, consisting of (1) data
acquisition, (2) model training, and (3, 4) querying the model

to monitor behavior.

Physical side-channel monitors monitor the execution of
a program though physical side-channel signals. A physical
side-channel monitor consists of two parts, a physical side-
channel collection module and an anomaly detector. The sig-
nal collection module collects physical side-channel signals
during the execution of the program. The anomaly detector
predicts the status of the program (e.g., normal or abnormal,
malicious or benign) based on the collected signals.

The setup of a physical side-channel monitor is illustrated
in Figure 1. They are commonly trained using data-driven
models since current embedded platforms are exceedingly di-
verse and complex, discouraging the use of manually designed
models. In the signal collection module, physical side-channel
signals are collected during the normal execution of the pro-
gram. This allows for initial training in a clean environment as
well as subsequent retraining when necessary over time. The
collected signals represent a wide subset of possible behav-
iors and control flows of the program. Once a model has been
trained to sufficiently high accuracy, the monitoring phase
begins. During system operation, the monitor measures the
running system, returning a response on whether the system
is executing benign or malicious code.

Formalizing Side-Channel Restrictions. Pierazzi et
al. [44] provide a formalized understanding of the challenges
that the side-channel domain poses to an adversary. They
differentiate between the problem space – the attacker-
modifiable program code – and the feature space, which in
this case is the resulting side-channel signal and input to
the monitor. Without knowing an invertible or differentiable
mapping between the problem and the feature space, standard
gradient-based adversarial attacks [19] are infeasible.

Although the estimation or derivation of such a map-
ping poses an interesting question, we note that discover-
ing such a mapping is outside the scope of this work, as
any such mapping would be to some extent platform spe-
cific and therefore not widely generalizable. Additionally,

2

+ No interference with
real-time control

+ Air-gapped detection
trusted computing base

+ Hard to mislead due to
tamperproof physics laws
that generate side signals

Robustness Against Mimicry Attacks?
[USENIX-Sec]

MOVS R2,#0
MOV.W R12,#1
MOV.W LR,#0xC

Loc_80002D2
MOV R0,SP
MOVS R1,#9
MOV R3,#0

loc_80002D8
LDR.W R7,[R0],#4
CBNZ R7,loc_80002EA

LDR.W R7,[R4,j,LSL#2]
CMP mm,R7
ITT GT
MOVGT R2,j
MOVGT mm,R7

Loc_80002EA
ADDS j,#1
CMP j,#3
BNE loc_80002D8

ADD j,SP,#0x48+var_18
ADD.W R3,R3,R2,LSL#2
LDR mm, =dis
STR.W R12,[R3,#-0x30]
MLA.W R8,LR,R2,R5
MOVS R0, #0

Loc_8000302
LDR.W R3,[R8],#4
CMP R3,#8
BGT loc_800318

LDR.W R7, [R4, R2, LSL#2]
ADD R3,R7
LDR R7,[R1]
CMP R7,R3
IT GT
STRGT R3,[R1]

Loc_8000318
ADDS v,#1
CMP v,#3
ADD.W R1,R1,#4
BNE loc_8000302

CMP R6,#1
BEQ loc_800032A

MOVS R6,#1
B loc_80002D2

Figure 2: Assembly code snippet of the path planning program. Different colors are used to show the mappings between
instructions and corresponding power side-channel signal segments in Figure 3 in a clearer way.

Figure 3: Power side-channel signal collected during the
execution of the benign program. Colors correspond to the

basic blocks of the program in Figure 2.

in our testing we found that the resulting physical signal at
each point in time was affected by both the currently exe-
cuting instruction as well as the series of previously exe-
cuted instructions, indicating that deriving a mapping would
be non-straightforward. Instead, we utilize a problem-driven
search [11, 45] to learn effective attack strategies. We also
focus on several of the major challenge categories identified
by Pierazzi et al. [44], which highlight the domain-specific
adversarial barriers which make designing an attack on side-
channel monitors difficult: problem-space transformation lim-
itations and semantic preservation. The program code is based
on a set of assembly instructions which have a rigid structure
(feasible control flows), as well as semantic constraints such
as temporal and data dependencies. The resulting discrete set
of possible modifications must be taken into consideration by
an attacker to preserve program functionality during an attack
to remain evasive.

3 Problem Formulation

3.1 Motivating Example
Consider an embedded system executing a path-planning task
for a robotic arm. This system is protected by a power side-
channel based control flow monitor similar to those presented
in related work and described in the previous section. Fig-
ure 2 and Figure 3 show a highly simplified example of a
typical cyclical control program and corresponding power

Figure 4: Power side-channel signal after the malicious
payload is injected at the beginning. The malicious signal

segment is marked in red.

signal collected by the monitor. The signal represents an exe-
cution trace of the path-planning program: which instructions
are executed, which branches are taken, and which control
flow is followed. The anomaly detector monitors these power
side-channel signals and reports any anomalous behavior.

More specifically, the anomaly detector takes the power
side-channel of a scan cycle as input and outputs a confidence
score. The confidence score indicates how likely it is that
the input signal corresponds to an execution of the benign
program. A threshold is set on the confidence score, with a
confidence score lower than the threshold indicating an attack
on the embedded system. The detector itself uses a data-driven
model trained with power side-channel signals collected over
a period of time during normal system operation.

An adversary wants to perform a data injection attack on
the robotic arm, e.g., altering the inputs to the path planning
algorithm. In this way, they can alter the internal state of the
program and hence the output actuation to cause undesired
arm behavior or damage.

The adversary also wants to launch a stealthy attack, i.e.,
the attack should not cause unintentionally observable effects.
For example, replacing the original program with a malware
program entirely might trigger an alarm in the system supervi-
sor or other automated tools, as a the original data-monitoring
feed is no longer available. Stealthy attacks have a more last-
ing impact on the system compared to attacks which break
down the system quickly, as shown in real world attack exam-
ples, e.g., Stuxnet [24]. To achieve this, the adversary might
choose to inject a malicious payload into the benign program.

3

Controller
program

MOVS R2,#0
MOV.W R12,#1
MOV.W LR,#0xC

Loc_80002D2
MOV R0,SP
MOVS R1,#9
MOV R3,#0

loc_80002D8
LDR.W R7,[R0],#4
CBNZ R7,loc_80002EA

LDR.W R7,[R4,j,LSL#2]
CMP mm,R7
ITT GT
MOVGT R2,j
MOVGT mm,R7

Loc_80002EA
ADDS j,#1
CMP j,#3
BNE loc_80002D8

ADD j,SP,#0x48+var_18
ADD.W R3,R3,R2,LSL#2
LDR mm, =dis
STR.W R12,[R3,#-0x30]
MLA.W R8,LR,R2,R5
MOVS R0, #0

Loc_8000302
LDR.W R3,[R8],#4
CMP R3,#8
BGT loc_800318

LDR.W R7, [R4, R2, LSL#2]
ADD R3,R7
LDR R7,[R1]
CMP R7,R3
IT GT
STRGT R3,[R1]

Loc_8000318
ADDS v,#1
CMP v,#3
ADD.W R1,R1,#4
BNE loc_8000302

CMP R6,#1
BEQ loc_800032A

MOVS R6,#1
B loc_80002D2

Figure 2: Assembly code snippet of the path planning program. Different colors are used to show the mappings between
instructions and corresponding power side-channel signal segments in Figure 3 in a clearer way.

Figure 3: Power side-channel signal collected during the
execution of the benign program. Colors correspond to the

basic blocks of the program in Figure 2.

in our testing we found that the resulting physical signal at
each point in time was affected by both the currently exe-
cuting instruction as well as the series of previously exe-
cuted instructions, indicating that deriving a mapping would
be non-straightforward. Instead, we utilize a problem-driven
search [11, 45] to learn effective attack strategies. We also
focus on several of the major challenge categories identified
by Pierazzi et al. [44], which highlight the domain-specific
adversarial barriers which make designing an attack on side-
channel monitors difficult: problem-space transformation lim-
itations and semantic preservation. The program code is based
on a set of assembly instructions which have a rigid structure
(feasible control flows), as well as semantic constraints such
as temporal and data dependencies. The resulting discrete set
of possible modifications must be taken into consideration by
an attacker to preserve program functionality during an attack
to remain evasive.

3 Problem Formulation

3.1 Motivating Example
Consider an embedded system executing a path-planning task
for a robotic arm. This system is protected by a power side-
channel based control flow monitor similar to those presented
in related work and described in the previous section. Fig-
ure 2 and Figure 3 show a highly simplified example of a
typical cyclical control program and corresponding power

Figure 4: Power side-channel signal after the malicious
payload is injected at the beginning. The malicious signal

segment is marked in red.

signal collected by the monitor. The signal represents an exe-
cution trace of the path-planning program: which instructions
are executed, which branches are taken, and which control
flow is followed. The anomaly detector monitors these power
side-channel signals and reports any anomalous behavior.

More specifically, the anomaly detector takes the power
side-channel of a scan cycle as input and outputs a confidence
score. The confidence score indicates how likely it is that
the input signal corresponds to an execution of the benign
program. A threshold is set on the confidence score, with a
confidence score lower than the threshold indicating an attack
on the embedded system. The detector itself uses a data-driven
model trained with power side-channel signals collected over
a period of time during normal system operation.

An adversary wants to perform a data injection attack on
the robotic arm, e.g., altering the inputs to the path planning
algorithm. In this way, they can alter the internal state of the
program and hence the output actuation to cause undesired
arm behavior or damage.

The adversary also wants to launch a stealthy attack, i.e.,
the attack should not cause unintentionally observable effects.
For example, replacing the original program with a malware
program entirely might trigger an alarm in the system supervi-
sor or other automated tools, as a the original data-monitoring
feed is no longer available. Stealthy attacks have a more last-
ing impact on the system compared to attacks which break
down the system quickly, as shown in real world attack exam-
ples, e.g., Stuxnet [24]. To achieve this, the adversary might
choose to inject a malicious payload into the benign program.

3

Power signal

Trivial malware injection (Detected)

MOVS R2,#0
MOV.W R12,#1
MOV.W LR,#0xC

Loc_80002D2
MOV R0,SP
MOVS R1,#9
MOV R3,#0

loc_80002D8
LDR.W R7,[R0],#4
CBNZ R7,loc_80002EA

LDR.W R7,[R4,j,LSL#2]
CMP mm,R7
ITT GT
MOVGT R2,j
MOVGT mm,R7

Loc_80002EA
ADDS j,#1
CMP j,#3
BNE loc_80002D8

ADD j,SP,#0x48+var_18
ADD.W R3,R3,R2,LSL#2
LDR mm, =dis
STR.W R12,[R3,#-0x30]
MLA.W R8,LR,R2,R5
MOVS R0, #0

Loc_8000302
LDR.W R3,[R8],#4
CMP R3,#8
BGT loc_800318

LDR.W R7, [R4, R2, LSL#2]
ADD R3,R7
LDR R7,[R1]
CMP R7,R3
IT GT
STRGT R3,[R1]

Loc_8000318
ADDS v,#1
CMP v,#3
ADD.W R1,R1,#4
BNE loc_8000302

CMP R6,#1
BEQ loc_800032A

MOVS R6,#1
B loc_80002D2

Figure 2: Assembly code snippet of the path planning program. Different colors are used to show the mappings between
instructions and corresponding power side-channel signal segments in Figure 3 in a clearer way.

Figure 3: Power side-channel signal collected during the
execution of the benign program. Colors correspond to the

basic blocks of the program in Figure 2.

in our testing we found that the resulting physical signal at
each point in time was affected by both the currently exe-
cuting instruction as well as the series of previously exe-
cuted instructions, indicating that deriving a mapping would
be non-straightforward. Instead, we utilize a problem-driven
search [11, 45] to learn effective attack strategies. We also
focus on several of the major challenge categories identified
by Pierazzi et al. [44], which highlight the domain-specific
adversarial barriers which make designing an attack on side-
channel monitors difficult: problem-space transformation lim-
itations and semantic preservation. The program code is based
on a set of assembly instructions which have a rigid structure
(feasible control flows), as well as semantic constraints such
as temporal and data dependencies. The resulting discrete set
of possible modifications must be taken into consideration by
an attacker to preserve program functionality during an attack
to remain evasive.

3 Problem Formulation

3.1 Motivating Example
Consider an embedded system executing a path-planning task
for a robotic arm. This system is protected by a power side-
channel based control flow monitor similar to those presented
in related work and described in the previous section. Fig-
ure 2 and Figure 3 show a highly simplified example of a
typical cyclical control program and corresponding power

Figure 4: Power side-channel signal after the malicious
payload is injected at the beginning. The malicious signal

segment is marked in red.

signal collected by the monitor. The signal represents an exe-
cution trace of the path-planning program: which instructions
are executed, which branches are taken, and which control
flow is followed. The anomaly detector monitors these power
side-channel signals and reports any anomalous behavior.

More specifically, the anomaly detector takes the power
side-channel of a scan cycle as input and outputs a confidence
score. The confidence score indicates how likely it is that
the input signal corresponds to an execution of the benign
program. A threshold is set on the confidence score, with a
confidence score lower than the threshold indicating an attack
on the embedded system. The detector itself uses a data-driven
model trained with power side-channel signals collected over
a period of time during normal system operation.

An adversary wants to perform a data injection attack on
the robotic arm, e.g., altering the inputs to the path planning
algorithm. In this way, they can alter the internal state of the
program and hence the output actuation to cause undesired
arm behavior or damage.

The adversary also wants to launch a stealthy attack, i.e.,
the attack should not cause unintentionally observable effects.
For example, replacing the original program with a malware
program entirely might trigger an alarm in the system supervi-
sor or other automated tools, as a the original data-monitoring
feed is no longer available. Stealthy attacks have a more last-
ing impact on the system compared to attacks which break
down the system quickly, as shown in real world attack exam-
ples, e.g., Stuxnet [24]. To achieve this, the adversary might
choose to inject a malicious payload into the benign program.

3

MOVS R2,#0
MOV.W R12,#1
MOV.W LR,#0xC

Loc_80002D2
MOV R0,SP
Chunk 1,2,3,4
MOVS R1,#9
MOV R3,#0

loc_80002D8
LDR.W R7,[R0],#4
CBNZ R7,loc_80002EA

LDR.W R7,[R4,j,LSL#2]
Chunk 5
CMP mm,R7
ITT GT
MOVGT R2,j
MOVGT mm,R7

Loc_80002EA
ADDS j,#1
CMP j,#3
BNE loc_80002D8

ADD j,SP,#0x48+var_18
ADD.W R3,R3,R2,LSL#2
Chunk 6,7
LDR mm, =dis
STR.W R12,[R3,#-0x30]
MLA.W R8,LR,R2,R5
MOVS R0, #0

Loc_8000302
LDR.W R3,[R8],#4
CMP R3,#8
Chunk 8
BGT loc_800318

LDR.W R7, [R4, R2, LSL#2]
ADD R3,R7
LDR R7,[R1]
Chunk 9
CMP R7,R3
IT GT
STRGT R3,[R1]

Loc_8000318
ADDS v,#1
CMP v,#3
ADD.W R1,R1,#4
BNE loc_8000302

CMP R6,#1
BEQ loc_800032A

MOVS R6,#1
B loc_80002D2

Figure 5: Assembly code snippet of the path planning program with injected malware chunks. Code is otherwise unchanged from
Figure 2.

Figure 6: Power side-channel signal after the malicious
payload is injected based on our proposed attack approach.

The malicious signal segments are marked as red.

The signal in Figure 4 is from a version of the program
where the malicious payload is injected at the beginning. This
signal is not recognized by the side-channel monitor, and the
resulting confidence score is lower than the threshold. There-
fore, the anomaly detector rejects it and triggers an alarm.

Using the attack approach proposed in this paper, the ad-
versary can find an optimal strategy to inject the malware into
the legitimate binary (see Figure 5) while keeping the confi-
dence score high. Figure 6 shows the corresponding power
side-channel signal.

3.2 Research Goals and Challenges
This paper has the following goal: given a benign program
guarded by a side-channel monitor and a malicious payload,
inject the payload into the program without being detected
by the monitor. As we consider direct attacks on the monitor
itself to be out of scope (e.g., as it is air-gapped), the attacker
has to ensure that the side-channel signals lead to a misclassi-
fication by the monitor. In particular, an adversary must craft
an adversarial signal indirectly by modifying the program
execution. The adversary also wants to make sure the desired
malicious functionality remains intact. This gives rise to the
main challenges that we address in this paper:

1. Side-channel signals are a consequence of code execu-
tion, meaning that malware cannot directly interact with
the side-channel monitor and rendering gradient-based
approaches ineffective. We address this challenge in Sec-

tion 4 with a side-channel-aware malware optimization
using an iterative search approach.

2. Side-channel monitors are trained on specific platforms
for specific programs, using uninterpretable (and inacces-
sible to the adversary) data-driven models. We address
this issue with the use of a substitute setup (Section 4.1),
which we show can sufficiently replicate the original
monitor for designing attacks.

3. Crafting an adversarial example is subject to domain-
specific constraints, such as temporal (e.g. B happens
after A) and data dependencies. To handle these con-
straints, we propose leveraging dependency analysis and
chunking heuristics in Section 4.2.

4. Attacks need to be optimized for robustness to reliably
evade detection even under the influence of measurement
noise. We minimize the effect of noise by incorporating
measurement variation in the optimization (Section 4.3)
to produce a high-confidence, low-variance attack.

These challenges result in a highly constrained problem
that highlights the strengths of side-channel monitors, but also
their weaknesses against advanced adversaries.

3.3 System Model
We consider safety-critical embedded systems monitored by
a power side-channel monitor. Examples of such systems in-
clude optimal path planning in robotic arms, traffic collision
avoidance control for an aircraft, and common control algo-
rithms such as the PID controller and Kalman filter. These
programs are commonly run on an embedded controller such
as a Programmable Logic Controller (PLC), which performs
several tasks. The PLC reads physical measurements from
sensors, runs a cycle of the control program, and sends the out-
puts to system actuators. Additionally, the PLC is connected
to a Supervisory Control and Data Acquisition (SCADA) sys-
tem which handles data logging and programming the PLC.

Externally monitoring this system in real time utilizes a
power side-channel monitor. It continuously collects power
side-channel signals of the embedded controller, and sends

4

MOVS R2,#0
MOV.W R12,#1
MOV.W LR,#0xC

Loc_80002D2
MOV R0,SP
Chunk 1,2,3,4
MOVS R1,#9
MOV R3,#0

loc_80002D8
LDR.W R7,[R0],#4
CBNZ R7,loc_80002EA

LDR.W R7,[R4,j,LSL#2]
Chunk 5
CMP mm,R7
ITT GT
MOVGT R2,j
MOVGT mm,R7

Loc_80002EA
ADDS j,#1
CMP j,#3
BNE loc_80002D8

ADD j,SP,#0x48+var_18
ADD.W R3,R3,R2,LSL#2
Chunk 6,7
LDR mm, =dis
STR.W R12,[R3,#-0x30]
MLA.W R8,LR,R2,R5
MOVS R0, #0

Loc_8000302
LDR.W R3,[R8],#4
CMP R3,#8
Chunk 8
BGT loc_800318

LDR.W R7, [R4, R2, LSL#2]
ADD R3,R7
LDR R7,[R1]
Chunk 9
CMP R7,R3
IT GT
STRGT R3,[R1]

Loc_8000318
ADDS v,#1
CMP v,#3
ADD.W R1,R1,#4
BNE loc_8000302

CMP R6,#1
BEQ loc_800032A

MOVS R6,#1
B loc_80002D2

Figure 5: Assembly code snippet of the path planning program with injected malware chunks. Code is otherwise unchanged from
Figure 2.

Figure 6: Power side-channel signal after the malicious
payload is injected based on our proposed attack approach.

The malicious signal segments are marked as red.

The signal in Figure 4 is from a version of the program
where the malicious payload is injected at the beginning. This
signal is not recognized by the side-channel monitor, and the
resulting confidence score is lower than the threshold. There-
fore, the anomaly detector rejects it and triggers an alarm.

Using the attack approach proposed in this paper, the ad-
versary can find an optimal strategy to inject the malware into
the legitimate binary (see Figure 5) while keeping the confi-
dence score high. Figure 6 shows the corresponding power
side-channel signal.

3.2 Research Goals and Challenges
This paper has the following goal: given a benign program
guarded by a side-channel monitor and a malicious payload,
inject the payload into the program without being detected
by the monitor. As we consider direct attacks on the monitor
itself to be out of scope (e.g., as it is air-gapped), the attacker
has to ensure that the side-channel signals lead to a misclassi-
fication by the monitor. In particular, an adversary must craft
an adversarial signal indirectly by modifying the program
execution. The adversary also wants to make sure the desired
malicious functionality remains intact. This gives rise to the
main challenges that we address in this paper:

1. Side-channel signals are a consequence of code execu-
tion, meaning that malware cannot directly interact with
the side-channel monitor and rendering gradient-based
approaches ineffective. We address this challenge in Sec-

tion 4 with a side-channel-aware malware optimization
using an iterative search approach.

2. Side-channel monitors are trained on specific platforms
for specific programs, using uninterpretable (and inacces-
sible to the adversary) data-driven models. We address
this issue with the use of a substitute setup (Section 4.1),
which we show can sufficiently replicate the original
monitor for designing attacks.

3. Crafting an adversarial example is subject to domain-
specific constraints, such as temporal (e.g. B happens
after A) and data dependencies. To handle these con-
straints, we propose leveraging dependency analysis and
chunking heuristics in Section 4.2.

4. Attacks need to be optimized for robustness to reliably
evade detection even under the influence of measurement
noise. We minimize the effect of noise by incorporating
measurement variation in the optimization (Section 4.3)
to produce a high-confidence, low-variance attack.

These challenges result in a highly constrained problem
that highlights the strengths of side-channel monitors, but also
their weaknesses against advanced adversaries.

3.3 System Model
We consider safety-critical embedded systems monitored by
a power side-channel monitor. Examples of such systems in-
clude optimal path planning in robotic arms, traffic collision
avoidance control for an aircraft, and common control algo-
rithms such as the PID controller and Kalman filter. These
programs are commonly run on an embedded controller such
as a Programmable Logic Controller (PLC), which performs
several tasks. The PLC reads physical measurements from
sensors, runs a cycle of the control program, and sends the out-
puts to system actuators. Additionally, the PLC is connected
to a Supervisory Control and Data Acquisition (SCADA) sys-
tem which handles data logging and programming the PLC.

Externally monitoring this system in real time utilizes a
power side-channel monitor. It continuously collects power
side-channel signals of the embedded controller, and sends

4

Optimal Chunked Malware Injection (NOT Detected)

Trustworthiness w/ Untrusted (edge) AI

• AI solutions are getting more complicated
– e.g., in terms of DNN size, architectural complexity

• “Verified AI” for real-world large models could take time to be practical
(industry reluctance)
– similar to SW verification efforts – code bases get more complex while

verification solutions improve
• Edge AI for the communication-computation tradeoff

– less secure (e.g., due to security support/DEP in MCUs)
• Ensure safety for systems including AI modules, which may act wildly

– top-down system-wide (to detect/ignore suspicious AI)
• Security-oriented DNN debloating/pruning [NeurIPS’21]

– to simplify verification at the cost of suboptimal control
– create a verifiable suboptimal small replica (surrogate) of the main optimal

controller – used for safety monitoring and response

11

DNN-based Surrogate for Assurance
[NDSS, RAID, NeurIPS]

12

Just-Ahead-Of-Time Controller Recovery ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

0

2

4

6

8

10

12

0 5 10 15 20

M
A

E
in

 d
e

gr
e

e

Time

Roll

Pitch

Yaw

Magnetometer X axis

Magnetometer Y axis

Magnetometer Z axis

Gyroscope X axis

Gyroscope Y axis

Gyroscope Z axis

Figure 9: Mean Absolute Error vs time

9.67299E-05

6.96719E-05

0.000319911

0.002269202

0.014454907

0.125989751

0.045104962

0.052366998

0.411604087

0.007484607

0 0.1 0.2 0.3 0.4 0.5

Gyroscope x axis

Gyroscope y axis

Gyroscope z axis

Magnetometer x axis

Magnetometer y axis

Magnetometer z axis

Pitch

Roll

Yaw

Altitude

False positive rate in %

Se
ns

or
 d

at
a

Figure 10: False positive rate due to sensor prediction

Controller program analysis. Basic static program analysis
approaches use SAT-basedmodel checking through Boolean logic [12,
23, 32] that could analyze sequence-based control systems with
timers, but those are only narrowly applicable. Unlike [6], the two
theorem-proving based approaches [14, 30] handle numerical in-
structions but do not implement rules for over!ow checks or mixed
bit vector and integer arithmetic. Almost all static analysis tech-
niques [24] fall short in either checking for all program details
or scaling up to large-scale critical infrastructures. To improve
dynamic SCADA infrastructure monitoring techniques [45], PLC-
based approaches have been suggested [4, 16] for dynamic physical
plant monitoring. Dynamic plant behavior safety monitors [26] and
mathematical intrusion detectors [8] are also related. In addition
to being intrusive and causing performance overhead, dynamic
monitoring solutions such as WeaselBoard [29] focus mainly on
accidental failures, ignoring malicious actions, and/or leave an in-
su"cient time bu#er for an e#ective response and recovery in case
of an attack or failure.

Drone security and safety. There have been several recent
e#orts on o$ine and runtime formal veri%cation of drone plat-
forms [37]. Javaid et al. [17] investigates potential threats against
UAV platforms and how existing cybersecurity techniques fall short
in defense due to the lack of consideration of the physical dynam-
ics. Chan et al. [7] present an overview of formalizing stability
properties of cyber-physical systems and drone platforms using the
Coq proof assistant. The proof procedures introduced require fairly

tedious human involvement. R2U2 [39] proposes a runtime formal
veri%cation for monitoring of security properties and diagnosing
of security incidents. R2U2 continuously monitors inputs from var-
ious sources such as the GPS and the ground control station and
identi%es anomalous behaviors once they occur. R2U2 relies on
the models of the controller code that are assumed given by the
operators. Additionally, as discussed earlier, R2U2’s runtime veri%-
cation failure alerts often result in too-late noti%cations for a timely
recovery strategy selection and deployment.

9 CONCLUSION
We presented Crystal, a just-ahead-of-time formal veri%cation and
controller recovery solution for cyber-physical system and evalu-
ated our solution over 3DR Solo quadcopter. Crystal’s just-ahead-
of-time analysis eliminates the state explosion problem and gives
the operators a time gap to choose recovery actions. Additionally,
unlike traditional online monitoring solutions, Crystal leaves the
operators with an arbitrarily-adjustable time gap to decide upon
how to recover the system normal operation mode in case of an
unsafe state. Our experimental results show that Crystal can proac-
tively detect unsafe states, and recover the system with a negligible
performance overhead.

A GLOBAL SAFETY CONDITIONS
The class of attacks and the relevant global safety requirements for
the attacks on the quadcopter are shown in Table 3

B NORMAL OPERATION MODE PHYSICAL
MODELING

The nonlinear discrete-time system obtained from the !ight dy-
namics equations can be written by the state equations as

x(n + 1) = f (x(n),u(n)) +w(n) (3)

y(n) = h(x(n)) +v(n) (4)

where x is the (i * 1) state vector of sensor data, y is the (j * 1)
observation vector of actuator data, f is the state transition model,
h is the observation model. Both f and h are nonlinear functions. w
and v are the processes and observation noises which are zero-mean
Gaussian noises with known covariance q and r respectively. u is
the control vector. n is the current sample of the sensor data and n
+ 1 is the future sample of the sensor data. For the system equations
in Equation 3 and Equation 4 the EKF solution for state estimation
of one step ahead of time are given by Equations 3-9

x̂(n + 1|n) = f (x̂(n |n)),u(n)) (5)

Equation 5 is the predicted sensor data values for one step ahead
of time.

x̂(n |n) = x̂(n |n − 1) + K(n)[y(n) − h(x̂(n |n − 1))] (6)

Equation 6 is the sensor values estimation update.

K(n) = P(n |n − 1)H (n)T [H (n)P(n |n − 1)H (n)T + R(n)]−1 (7)

K(n) is (i * j) Kalman gain matrix

P(n + 1|n) = F (n)P(n |n)F (t)T +Q(n) (8)

Equation 8 is the predicted covariance estimate.

P(n |n) = P(n |n − 1) − K(n)H (n)P(n |n − 1) (9)

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA S. Etigowni et al.

X

Shallow TEG

Current
System
State

Possible
Next
States

Time

Start

As time passes,
the physical system
follows a path through
the shallow TEG.

The actual states visited
become the roots of
subsequent shallow TEGs

At each step, possible bad future
states are checked for, ahead of
actual system execution.

Shallow model

As -me passes,
the physical system
follows a path through
the shallow model

The actual states visited
become the roots of
subsequent shallow models

At each step, possible bad future
states are checked for, ahead of
actual system execu-on

Current
System
State

Possible
Next
State

Start

Time

Figure 1: Just-Ahead-Of-Time Veri!cation

controller program inputs from the sensors, e.g., inertial measure-
ment unit (IMU) or GPS and sent the output commands to drone’s
actuators, e.g., propeller motors. Crystal executes the control logic
symbolically and calculates possible input-to-output mapping (sen-
sor measurements to actuation commands) of the controller pro-
gram. Crystal closes the loop on the physical channel by calculating
how sensor measurements are determined based on the previous
actuation commands and physical drone’s dynamic evolution (i.e.,
actuation commands to sensor measurements). Crystal estimates
drone’s state (e.g., location and orientation) and deploys a new
symbolic execution of the drone’s physical dynamics to calculate
its input-to-output mappings.

Given the !ight control unit and physical system coupling, Crys-
tal pipes its "ndings of IO mappings of the cyber controller and
physical dynamics together to create a full closed-loop model of
the cyber-physical system. The model captures all the interdepen-
dencies between cyber and physical components and is used for
Crystal’s just-ahead-of-time formal veri"cation. Crystal does not
generate the complete systemmodel one-time due to its (very) large
size and instead relies on local exploration and model checking of
the upcoming future symbolic states up to a "nite horizon based
on the current system state. This enables Crystal to stay just a few
steps ahead of native execution and avoids exhaustively considering
all states. Crystal periodically synchronizes the model exploration
process with the native execution through communication with
the drone’s processor and obtaining concrete values of !ight con-
troller program variables. The synchronization step allows Crystal
to re"ne the model exploration and not explore the states that will
de"nitely not be reached through the native execution. The model
generation process continues to stay ahead of native execution and
explore’s the states that have not yet been reached.

Crystal inspects each upcoming state and checks its symbolic
variable values to determinewhether the state could be unsafe under
a speci"c concretization. If the drone’s native execution is about
to enter the unsafe state according to its upcoming concrete input
values Crystal will notify the operator about potentially upcoming
unsafe state’s and requests for recommended recovery response.
Crystal expects to receive the operator’s response before the native
execution catches up. This waiting time denotes how far Crystal’s

Figure 2: Drone’s pitch, roll, and yaw

JAT exploration leads the native execution and could be adjusted
initially. Crystal deploys the recommended countermeasure if the
unsafe state is actually realized, and caches it to not involve the
operator again for future similar situations.

The contributions of this paper are as follows:

• We present a scalable formal veri"cation technique, just-
ahead-of-time veri"cation, for complex UAV platforms that
eliminates state explosion problem and leaves time for the
operator to select an appropriate countermeasure strategy.

• We present a cyber-physical symbolic execution framework
that leverages programming language analysis and enhanced
drone state estimation techniques to create cyber-physical
models for formal veri"cation purposes.

• We present a predictive hybrid model with data-driven and
system knowledge model of the drone’s physical dynamics
using a neural network and extended Kalman "lter (EKF)
that takes actuation commands (!ight controller outputs) as
inputs and outputs the predicted sensor data (controller’s
next input).

This paper is organized as follows. Section 2 gives an introduc-
tion to drones dynamics and a previous related work [24]. Section 3
lays out our assumed threat model and gives an overview of Crys-
tal’s architecture. Section 4 explains the predictive model based on
a hybrid approach of a neural network and EKF model to formulate
the drone physical dynamics. Section 5 describes how the drone’s
controller code and physical dynamical formulations are integrated
into a uni"ed cyber-physical model. Section 6 explains the real-time
formal veri"cation and recovery using the cyber-physical models.
Section 7 describes our prototype implementation and evaluation
results. Section 8 covers the related work, and Section 9 concludes
the paper.

2 BACKGROUND

2.1 Drone Flight Dynamics
Since the motion of UAV is in three-dimensional space, it can be con-
trolled along three axes. The altitude of the drone is proportional
to and controlled by the thrust produced by the propellers from
the four motors. For instance, the thrust on all the motors should
be the same to move the drone just in the z-axis. In order for the
drone to hover (stay at a "xed location in air), all the motors should
produce a thrust to neutralize gravity. To balance the rotational
torque produced by the motors and to increase the stability of the

Conclusion

• Predictive Situational Awareness
• Physics-Aware Software Analysis
• Human-Assisted Intrusion Response
• Domain-Specific AI for Security

• Trustworthiness w/ Untrusted (edge) AI

13Saman Zonouz saman.zonouz@gatech.edu Thank You!

Positions available in
Trustworthy ML and CPS security

