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 Infeasible to install sensors at a plug-level in every household.

 Cost of sensors and installation.

 Network capacity.

 Would like to provide consumers high-resolution feedback on 
power usage.

Nonintrusive Load Monitoring (NILM)
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 Acts as an ‘estimator’ for the closed-loop smart grid.

Nonintrusive Load Monitoring (NILM)

2/22/2017



Page 4

NILM Problem
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 Previous work:

 Phrased the energy disaggregation problem as a hybrid optimal 
control problem.

 Used results from adaptive filtering to derive a tractable, recursive 
algorithm with theoretical guarantees.

Algorithms for NILM
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 Find conditions on which there exists an algorithm with a desired 
performance.

 Analyze intrinsic information in the aggregate power consumption 
signal.

 Implications:

 A model for understanding privacy risks in advanced metering 
infrastructures (AMIs).

 Prescriptions for design of smart grid systems.

 Benchmark for evaluating performance of NILM methods.

Fundamental Limits of NILM
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 Phrase the problem as a hypothesis testing problem.

 A simplified, easier problem: distinguish two scenarios.

 Optimal solution: Separating hyperplane.

 Probability of distinguishing two scenarios is bounded above by:

Preliminary Results
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 Probability of distinguishing a toaster and a kettle as function of 
our measurement and modeling error:

Preliminary Results
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 Probability of distinguishing a toaster and a kettle as function of 
the sampling rate:

Preliminary Results
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 Probability of successful NILM of 6 devices as a function of 
measurement and modeling error:

Preliminary Results



Page 11

Big Picture


