Zero-Delay Load Balancing Algorithms in Large-Scale Data Centers

Xin Liu and Lei Ying **Arizona State University**

Award title "Demand Response & Workload Management for Data Centers with Increased Renewable Penetration"

Motivation

Large server systems are thriving:

- Jobs (e.g. search requests, data mining requests) are processed by many servers (e.g. large-scale data centers).
- Short response time and asymptotic zero latency are important for data centers.

Load balancing in server systems:

Role - schedule incoming requests to servers

Goal - low delay (zero delay)

Model

Distributed queue system:

- Key assumptions:
- ✓ N homogenous servers
- ✓ FIFO queues
- \checkmark Exponential service time ($\mu = 1$)
- ✓ Poisson arrival: λN
- ✓ Sub Halfin-Whitt regime:

$$\lambda = 1 - N^{-\alpha}$$
, $\alpha < 0.5$

- ✓ Finite buffer b = o(log N)
- Load balancing in server system

Research problems:

- what are good load balancing to achieve zero delay at steady-state in sub Halfin-Whitt regime?

Main contribution:

- a sufficient condition to achieve zero delay
- simple analysis framework

Main Results

JSQ, JIQ, I1F and Pod with $d = \frac{\log N}{1-\lambda}$ achieve zero delay as $N \to \infty$.

	Steady-State		Steady-State	
Servers with one job	$N-N^{1-\alpha}$	Waiting time	$\leq \frac{3 \log N}{\sqrt{N}}$	
Servers with two or more jobs	k√N log N	Waiting prob	$\leq \frac{4 \log N}{\sqrt{N}}$	$\leq \frac{30b}{N^{0.5-\alpha} \log N}$
Load balancing	JSQ, I1F Pod with d= $\frac{\log N}{1-\lambda}$	Load balancing	JSQ, I1F Pod with $d = \frac{\log N}{1 - \lambda}$	

Expected queue length, waiting time and prob at steady-state

Sufficient condition to achieve zero delay:

- A job routed to an idle server with a high probability $(1 - N^{-0.5})$ given a fraction $N^{-\alpha}$ of idle servers.

Analysis framework: SSC + Stein's method

State Space collapse (b = 2)

at least i jobs

 (S_1, S_2) collapses to blue and red region:

$$S_1 \ge \lambda + \frac{2 \log N}{\sqrt{N}}$$
 or $S_2 \le \frac{2 \log N}{\sqrt{N}}$

Stein's method

A truncated distance function:

h(S) = max
$$\left\{ S_1 + S_2 - \lambda - \frac{2 \log N}{\sqrt{N}}, 0 \right\}$$

Coupling with M/M/N system:

Steady-state approximation:

Gradient bound
$$E[h(S)] = E[Lg(S) - Gg(S)|S \in \Omega] \Pr(S \in \Omega)$$

$$+ E[Lg(S) - Gg(S)|S \notin \Omega] \Pr(S \notin \Omega) \stackrel{SSC}{\longrightarrow}$$

