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Although recent studies of Shared Autonomous Vehicles (SAVs) have explored the economic costs and
environmental impacts of this technology, little is known about how SAVs can change urban forms,
especially by reducing the demand for parking. This study estimates the potential impact of SAV system
eywords:
hared autonomous vehicle
arking
gent-based model

on urban parking demand under different system operation scenarios with the help of an agent-based
simulation model. The simulation results indicate that we may be able to eliminate up to 90% of parking
demand for clients who adopt the system, at a low market penetration rate of 2%. The results also suggest
that different SAV operation strategies and client’s preferences may lead to different spatial distribution
of urban parking demand.
. Introduction

There is compelling research to suggest that advances in trans-
ortation technology has a powerful and irreversible impact on
rban form. The development of streetcars in the 1950s triggered
he initial wave of suburbanization, which accelerated with the
dvent of the automobiles in the 20th century. Today, we are at
he cusp of the emergence of autonomous vehicles (AVs), that
s, vehicles that can drive themselves. These driverless vehicles
re expected to introduce more fundamental changes to human
ravel behavior, which may lead to different social structures and
rban forms. AVs will facilitate car-sharing and ride-sharing behav-

or, as the technology can overcome some key barriers, especially
he limited accessibility and reliability of today’s car-sharing and
ide-sharing programs (Fagnant & Kockelman, 2014; Kornhauser
t al., 2013; Malokin, Mokhtarian, and Circella, 2015). Given the
otential capabilities of AVs, it is easy to envision the implemen-
ation of Shared Autonomous Vehicle (SAV) Systems, which will
perate as a taxi service on demand. These future driverless taxis
ould also enable unrelated passengers to share the same ride

ith minimal increases in travel time and costs. It is reasonable

o expect that SAVs will operate with a higher passenger load and
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automatically navigate to locations from where trips will originate,
thereby reducing parking demand.

In this study we estimate the various levels of parking demanded
under SAV systems characterized by varying fleet sizes and pas-
senger wait times. These estimates are based on an agent-based
model of a 10 mi × 10 mi hypothetical city laid out in a grid network
of 0.5 mi street segments. We develop scenarios with fleet sizes
between 500 and 800 vehicles, with various levels of willingness
for ride-sharing, and with different empty vehicle cruising strate-
gies. The simulation results indicate the amount of parking spaces
saved when compared with conventional systems. The results also
show where the most parking reductions can be expected under
different assumptions in the stylized city described above.

This study adds to the growing literature on the potential impact
of AVs on the built environment. While the associated technologies
to enable AVs are maturing quickly, these studies also acknowledge
that the social and legal infrastructure for implementing such sys-
tems are lagging. Yet, deployment of small-scale, low-speed shared
autonomous vehicles will be tested in Europe (Citymobil2 Project,
2015) and possibly by Google in the near future (Markoff, 2014). In
this paper we specifically address AVs as part of a sharing economy,
such as car and ride sharing services that are becoming very popu-
lar. We contend that SAVs offer a number of advantages to travelers
that current systems cannot match.

Compared to the conventional car-sharing program, such as

Zipcar and Car2go, the SAV system offers more flexible services
for clients, primarily through the elimination of the fixed rental
and returning stations. For the mobile app based car-sharing pro-
gram, such as Uber and Lyft, the SAV system may contribute to the
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eduction of operating costs and provide more affordable mobil-
ty services for disadvantaged groups of population. Meanwhile, by
inking multiple trips and serving them using one SAV, the service
olds great potential to relieve congestion on roads.

. Earlier work

Given that the SAVs have multiple advantages over the existing
ar-sharing programs, several previous studies explored the fea-
ibility of this new type of car-sharing. Ford (2012) reviewed the
resent social and legal barriers for the adoption of SAV systems.
he study also developed a simplified model to evaluate the perfor-
ance of a shared taxi system with fixed picking up and dropping

ff stations every half-mile to determine whether the system can
upport existing travel patterns. The results suggest that the sys-
em is quite feasible, even though the current legal environment
ill pose several barriers.

Kornhauser et al. (2013) evaluated the feasibility of a shared
utonomous taxi system in various counties in New Jersey. Their
esults indicate that SAVs can facilitate an increase in ride-sharing
ravel behavior. Burns, Jordan, and Scarborough (2013) developed

more advanced agent based simulation model to evaluate the
conomic feasibility of a ubiquitous SAV car-sharing system. The
imulation results imply that the cost per trip mile can range from
0.32 to $0.39, depending on the fleet size of the SAV system. This
ravel cost is more affordable than owning and operating a private
ehicle (Burns et al., 2013).

Fagnant and Kockelman (2014) investigated whether the SAV
ystem is environmentally sustainable. Their model assumptions
re similar to that used in Burns et al.’s model, but the model
ays special attention to the environmental impacts of the sys-
em. Their study results indicate that each SAV has the potential
o replace approximately 11 privately owned vehicles. Addition-
lly, some environmental benefits such as reductions in energy
onsumption, GHG emissions, and air pollutants emissions per
ehicle life cycle can be expected once the SAV system starts to
erve 5% of the population within the 10 mi × 10 mi grid-based
tudy area. However, Fagnant and Kockelman’s study suggested
hat the SAV system comes with associated costs of approximately
% additional unoccupied VMT generated during the client picking
p process. This side effect may be alleviated or even eliminated
ith the increase of ride-sharing behavior (Fagnant & Kockelman,

014). In sum, there is evidence from multiple studies indicating
his envisioned car-sharing service is economical and environmen-
ally feasible. These and other feasibility studies show that dynamic
ide-sharing service is expected to be more affordable and envi-
onmentally friendly compared to non-ridesharing systems (Chan
Shaheen, 2012; Noland, Cowart, & Fulton, 2006).
The popularity of dynamic ride-sharing can lead to reduced

emand for parking. Fagnant and Kockelman (2013) estimated a
aving of $250 in parking cost for each new autonomous vehi-
le in the market, primarily through reallocating parking space
rom Central Business District (CBD) to more remote areas and
rom ride-sharing. Moreover, Hayes (2011) suggested that AVs
an economize parking space because they can park inches from
ach other since there is no need to open auto doors, assum-
ng that the passengers will be dropped off before the AVs
et to the parking slots. New mobile applications can serve
ndividuals who participate in dynamic ride-sharing service by

atching the nearest vehicle with the route that matches the
sers’ preference. Such a matching system will serve several

assengers at the same time by linking trips that have origins
nd destinations close to each other. Once the vehicle occu-
ancy rate is improved, more parking demand reduction can be
chieved.
nd Society 19 (2015) 34–45 35

Past modeling efforts regarding dynamic ride-sharing focused
on matching multiple clients with service vehicles so that certain
objective function can be optimized. Agatz, Erera, Savelsbergh, and
Wang (2011) developed a simulation of dynamic ride-sharing by
linking trips and vehicles to minimize the system level VMT genera-
tion. Martinez, Correia, and Viegas (2012) proposed an agent based
shared-taxi system that matched clients with taxis by minimiz-
ing the total travel time for both on-board and calling passengers.
Fagnant and Kockelman (2015) developed their version of dynamic
ride-sharing SAV model with more flexible objective function to
maximize the possibility of ride-sharing. In their model, as long as
the increased travel time for both on-board and calling clients do
not exceed certain thresholds, the two clients have the potential
to share rides. The SAV that can deliver both onboard and calling
clients to their destinations using the shortest amount of time is
assigned to the appropriate calling client.

Both the studies by Martinez et al. and Fagnant and Kockelman
assume that clients’ only concern is the time cost in the ride-sharing
process. However, this may not be the case in reality. The primary
concern for people with limited travel budgets may be the cost of
travel. If so, the objective function to minimize should be the total
travel cost. Thus, in this study a different objective function is used
to investigate how various customer service preferences may vary
the number of ride-sharing trips and urban parking demand.

Although the literature on SAVs is growing rapidly, there are
limited number of papers on how SAVs can reduce the demand
for parking space. It is still unclear how much the parking demand
is likely to be reduced and what would be the spatial distribution
of parking requirements once the system is implemented. Just as
The Economist (2013) stated recently: “Town planners, property
developers and builders need to start thinking about the effect of
self-driving technology on demand for roads, parking, housing and
so on. So far there is little sign that this is happening.” This study
begins to fill this gap through a simulation model, which is devel-
oped to estimate the potential impact of an SAV system on parking
demand.

3. Model parameters

This simulation is conducted on a 10 × 10 mi grid based hypo-
thetical city. The resolution of the grids, which also represents the
street network, is 0.5 mi. The client agents in this model are peo-
ple who are willing to use the SAV system. It is assumed that the
SAV system has a low penetration rate of 2% within the region.
In other words, only 2% of population within the simulated city
will use the SAV system instead of private vehicles. The clients will
generate vehicle trips that in general follow the same profile as esti-
mated from the National Household Travel Survey (FHWA, 2009),
in terms of trip length and trip departure time. SAVs are assigned
by the vehicle–client match center to serve clients. Different vehi-
cle assignment rules are set up in this simulation model, based on
clients’ willingness to share rides with others and preferences for
the type of vehicle service. The Assigned SAV will then provide
delivery services based on the operational rules configured within
the model. These operational rules include how fast the vehicles
may travel given the time of day, what kind of route the vehicles
might choose to follow, whether the vehicle will continue empty
cruising after dropping off the last client(s) on board, among others,
described later. The parking demand will be recorded at individual
grid cell level throughout the simulation process. By the end of the
simulation day, total parking demand will be estimated for each

grid cell in the simulation area. The time step of the model is set
at 1 min, indicating that the simulated variables, such as location
of vehicles, service requests from household agents, and vehicle
assignments will be updated every one simulation minute.
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of the CBD area. The number “0.65” is selected so that the amount
Fig. 1. Simulation model schematic graph.

. Model specifications and implementation

The simulation model is identified and programmed in Matlab.
n this model, client agents call the match center for SAV service,
nce they decide to make a trip. The client-SAV match center then
ssign the lowest cost vehicle to serve the client. After receiving
ommand from the match center, the assigned vehicle will pick up
he calling client and deliver him/her to the destination. The process
s illustrated in Fig. 1. The specifics for the major components in the

odel are elaborated in the following sections.

.1. Client agents and vehicle trip generation

In this model, the client agents represent people who are willing
o use the SAV system. In this study, we conservatively modeled a
ow market penetration rate of the SAV system, assuming approx-
mately 2% of the population within the study area will adopt the
ystem. Each client agent generates several vehicle trips within a
imulation day.

First, client agents are generated and assigned to each grid cell
n the simulated area. It is assumed that the population density
n the center of the hypothetical city is always higher than that
n the fringe area. For a city like Atlanta, the population density is
pproximately 8000 per square miles in urban center and declines
o around 1500 at places that are 5 mi away from the center (US
ensus Bureau, 2012). Thus, it is assumed that the density for client
gent will be approximately 160 (8000 × 2%) per square mile in the
rban center grids and 30 (1500 × 2%) per square mile in the further
ost grids in the simulated area. The population density within

ther grid cells are calculated based on their inversed Euclidean
istance from the urban core. Based on the assumed population
ensity, there will be approximately 10,000 participating clients

n our study area. Meanwhile, for each client agent, the model
andomly determines whether (s)he is willing to share rides with
trangers, based on the aggregated level of willingness to share. The
odel also generates a random hourly income for each client using

he cumulative density function (CDF) of 2014 U.S. national hourly
alary, obtained from Bureau of Labor Statistics (2014).

Second, we estimate the trip generation rate for each grid cell
ased on the density of client agents, given the assumption that
ach person, on average, generates around 3.79 vehicle-trips per
ay (FHWA, 2009). As a result, daily vehicle-trip generation rate is
et as 1.52 (160 × 3.79 × 0.0025) per grid cell in the very center of
he simulated area and 0.28 (30 × 3.79 × 0.0025) in the four corners
f the study area. The trip generation rates in all the rest of the cells
re estimated using the following formula:
i = �min + (�max − �min)
Distcorner,center

× Disti,center (1)
Fig. 2. Trip direction choice illustration.

where �i, is the trip generation rate at cell i; Distcorner,center, is the
Euclidean distance from corner to the center cell; Disti,center, is the
Euclidean distance from cell i to the center cell.

Third, the model generates random number of vehicle trips for
each grid cell given the trip generation rate �i for cell i, provided
the assumption that the trip generation will follow Poisson dis-
tribution. Subsequently, the model determines other parameters,
such as departure time, length, and destination, for the generated
vehicle-trips.

4.1.1. Trip departure time and length assignment
The model assigns a random departure time and trip length for

each generated vehicle-trip based on the empirical CDF obtained
from 2009 NHTS weighted vehicle-trip data. First, a uniformly dis-
tributed random number between zero and one is generated. Then
this random number is plugged into the corresponding inverse CDF
function to generate the random departure time and trip length, as
determined by functions 2 and 3 below. This process ensures that
the generated vehicle-trips generally follow the trip departure time
and length distributions from the 2009 national vehicle-trip profile.

DT = T∗ (r) (2)

TL = L∗ (r) (3)

where DT, is the simulated departure time; TL, is the simulated trip
length; T*(x), is the inversed CDF for trip departure time; L*(x), is the
inversed CDF for trip length distribution; r, is a system generated
uniformly distributed random number (between 0 and 1).

4.1.2. Trip destination assignment
The model identifies the location of destination for each gener-

ated vehicle-trip, based on the origin and length of the trip. Given
the trip origin and trip length, an agent has four travel direction
options, which are northwest, northeast, southwest, and southeast,
as shown in Fig. 2. The probability of following certain direction is
estimated using Formula 4, which is analogous to the algorithm
used in Fagnant and Kockelman’s model (2014). An attraction fac-
tor ˛ is used in the probability calculation formula to control the
attractiveness of the urban center area. In the morning, the ˛ is set
as “1” to push the majority of trips into the CBD area. In the after-
noon, the ˛ is reduced to “0.65” to allow more trips to go outside
of vehicle-trip arriving at CBD area will be roughly equal to that
leaving the area. A uniformly distributed random number is gen-
erated and compared to the calculated probabilities to determine
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he general direction of the trip. Given the trip direction and trip
ength, the model then determines the number of valid cells within
he study area. If the number of valid cells is larger than zero, the
nal destination cell will be randomly selected among all the possi-
le destination cells. Otherwise, the model goes back to randomly
enerating another trip direction. This process ends after a valid
estination is obtained.

r (Di) = ˛ × NumDi

Total Number of Cell
+ (1 − ˛) × 0.25 (4)

here NumDi
, is the number of cell that falls in area Di; ˛, is the

ttraction factor.

.2. SAV fleet size and operation rules

The SAV fleet size is set as a selectable parameter, which deter-
ines the urban parking demand. Different fleet sizes from 500 up

o 800 with increments of 50 are tested in the model. In the Fagnant
nd Kockelman (2014) model, the fleet size is determined by con-
inuously adding more vehicles into the system once the client has
een waiting for more than 10 min in the model warming up runs.
n our model, the final ideal fleet size is determined by the change of
verage waiting time in the system. We consider the fleet size to be
ptimum when additional 50 vehicles in the system does not signif-
cantly reduce the average waiting time throughout the simulation
ay.

All the SAVs in the system are randomly distributed in the study
rea at the beginning of the simulation day, which is similar to Burns
t al. (2013) model. To mimic traffic congestion during peak hours,
he SAV travel speed is set as 30 mph during off peak hours and is
educed to 21 mph during peak hours. The SAVs are set to serve up
o two overlapping vehicle trips generated by different agents. The
verage vehicle occupancy in the United States is 1.55 (Oak Ridge
ational Laboratory, 2012), thus two overlapping vehicle trips is

ikely to be generated by three persons. Assuming that all the SAVs
re compact passenger vehicles, the SAVs may only be able to serve
p to about two vehicle trips simultaneously.

Moreover, we also set up vehicle cruising rules in some scenarios
o further reduce average trip delay and urban parking demand. The
ehicle cruising algorithm is as follow. The study area is first divided
nto 16 (4 × 4) square subareas. For each area, the balance value is
stimated using Formula 5. The SAVs that have dropped off the last
lient but are not assigned to any other calling trips will cruise to
eighboring areas where the total balance value is higher. If the SAV

s already in the area with the highest total balance value, then it
ill keep cruising within the area randomly to find potential clients.

he SAVs will continue to cruise for several specified minutes before
t eventually parks at the last cruising destination.

alance Valuei = �i − SAVi (5)

here i, is the index for grid cell; �i, is the trip generation rate per
inute in grid cell i; SAVi, is the number of SAV in grid cell i.
In a grid based network, there exist multiple shortest routes

etween points A and B. To avoid congestion in one of the routes,
he model employs several route choice algorithms under differ-
nt service status of SAVs. For SAVs that are empty cruising or
re assigned with an agent who is willing to share, the route with
argest accumulated difference between the expected number of
alling agents and the number of SAVs is selected. However, the
AV will only pick up the second passenger if the coordinate of this
lient falls within the blue square, determined by the existing loca-
ion of the SAVs and destination of the first client as shown in Fig. 3,

o minimize total costs for both clients.

For SAVs assigned with one client agent who is unwilling to
hare or two agents who are willing to share, the route with the
east total number of SAVs will be selected to avoid traffic, as there
Fig. 3. Possible locations of the second client that can be picked up.

is no longer need to look for another potential sharing agent. It has
to be mentioned that once an SAV is assigned to serve two different
clients, the vehicle will optimize the route to deliver both agents to
their destinations, i.e. the shortest route to get to both destinations,
to reduce energy consumption. Thus, SAVs does not schedule route
based on first come first serve principle for agents who are willing
to share rides. All the scheduled routes will be updated at every
time step, assuming that the SAVs are always equipped with the
latest traffic conditions.

4.3. SAV–client match center

The SAV–client match center collects requests from persons
requesting a trip and finds an SAV that minimize the cost of pro-
viding the service as discussed below. The match center assigns
SAVs to serve agents who come first. At a certain time step, calling
agents, who are not assigned with an SAV, will be put into a waiting
list. Clients in the waiting list will be prioritized at the next time
step to be matched with an available SAV. To avoid the situation,
in which clients from certain areas will be served first, the order of
the agents who called at the same time will be randomized before
the SAV assignment process.

If there are multiple vehicles available in the system, the match
system will select the most suitable one for the calling client. To
find the “ideal” vehicle based on client’s preference and tolerance,
the following algorithm is implemented. First, if the calling agent is
not willing to share with other people, then the closest empty SAV
will be allocated to serve the client. If the calling client is willing
to share with others, then the match center will first identify all
the available vehicles in the system. For clients who are willing
to share, SAVs that are empty and the ones, assigned to only one
client who is also willing to share are all available vehicles. Then the
match center will estimate costs of each available SAV for both the
calling customer and the on board customer (if there is one). Ride-
sharing only happens when both the on board and calling client
can benefit from it. In other words, if the travel cost for either one
of them increases due to ride-sharing, then the sharing won’t take
place and the SAV with the on board client is no longer considered
as an available vehicle for the calling client. After estimating all the
potential travel costs, the match center will then assign the least
cost SAV (with respect to the calling agent) to serve the calling
clients. The potential travel costs are estimated based on client’s
preferences, as follows:

(1) In the scenario where clients value their time highly, the cost

is estimated based on the potential detour time and waiting
time cost. The time cost is estimated using the simulated client’s
hourly salary.
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Table 1
Daily parking demand by SAV fleet size.

SAV fleet size Daily parking
demand [Std. Dev.]

Avg. parking
demand (per SAV)

Avg. waiting time
[Std. Dev.]

Reduction in average waiting
time (s) per added SAV

500 2665 [41.6] 5.33 13.3 [2.58] –
550 2964 [25.5] 5.39 7.2 [0.48] 7.32
600 3187 [28.5] 5.31 4.6 [0.31] 3.12
650 3363 [35.2] 5.17 3.0 [0.40] 1.92
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700 3566 [32.8] 5.09
750 3754 [31.2] 5.01
800 3899 [36.5] 4.87

2) In the scenario where clients have a limited budget, the cost
is the actual out-of-pocket travel cost. The SAV travel cost is
estimated using trip mile costs based on Burns et al.’s model.
Burns et al. (2013) estimated the SAV travel cost to be from
$0.32 to a high end of $0.40 per trip mile in their base scenarios,
which have similar simulation set ups as in this study. We used
the higher trip cost, i.e. $0.40 per trip mile, as the SAV travel cost
for our study. When estimating travel cost for SAVs with one
client on board, the potential cost is going to be split between
the two clients, using the formula as shown below.

∀j ∈ J : Split Costj = SAV Cost × distj
∑i=1

J disti

(6)

where j, is the jth involved vehicle-trips; J, is the set of all
involved vehicle-trips; SplitCostj, is the share of cost should be
paid by jth involved vehicle-trips; SAVCost, is the cost occurred
after picking up the second client; distj, is the distance between
the second client’s origin and the jth client’s destination.

3) In scenario, where client is concerned about both time and out
of pocket costs, then the cost will be estimated as the sum of
both costs. Similar to the above scenarios, the potential SAV
travel cost will be split between the two agents who share rides.

If multiple SAVs have the lowest estimated cost, the ones
ith one client on board will be prioritized to promote dynamic

ide-sharing behavior in the system. Otherwise, the match model
andomly selects one of the lowest cost vehicles to serve the client.

. Results

We ran the model for 50 simulation days to obtain stable
esults to determine how the system may influence urban parking
emand. Various scenarios are developed to determine how differ-
nt attributes of the SAV system may affect urban parking demand.
o obtain a baseline, we first test a scenario with no-ridesharing
nd no-vehicle cruising to assess how different SAV fleet sizes may
nfluence urban parking demand. We then introduce ride-sharing
o check how clients’ level of willingness to share influences the
arking demand. In this scenario, clients’ preferences for different
ypes of SAVs are also tested. In the final scenario SAVs are allowed
o cruise without passengers for specified aunt of time to determine
ow this strategy may further reduce urban parking demand.

.1. Impact of SAV fleet size on urban parking demand

In this scenario, no ride-sharing service is offered by the SAV
ystem. Different SAV fleet sizes are tested to determine how par-
ing demand changes with the number of SAVs in the system. The
esult, as tabulated in Table 1, indicates that the total daily parking

emand is positively correlated with SAV fleet size. The standard
eviations are presented in the brackets. The results show that
dding another 50 vehicles into the system is likely to increase the
rban parking demand by approximately 150 and the increase is
2.1 [0.30] 1.08
1.8 [0.06] 0.36
1.7 [0.04] 0.12

quite constant. However, the day-to-day standard deviations tend
to diminish when there are more vehicles in the system, indicat-
ing that the system is more stable or reliant overall. Meanwhile,
after adding more vehicles in the system, the average daily parking
demand per serving SAV will decrease, as shown in Table 1.

As we might expect, the average wait times for SAVs improve
significantly with more vehicles in the system but the gains become
smaller as the numbers get larger (The last column in Table 1). For
instance, when there are only 500 SAVs in the system, the clients,
on average, have to wait approximately 14 min to be served. This
waiting time is even larger than some current bus systems. In real-
ity, if the clients have to wait longer than taking a bus, then most of
them may choose to keep their own private vehicles or use the tran-
sit system instead. Additionally, the variation in results for repeated
model runs for the 500-SAV scenario is quite large compared with
other scenarios, indicating that the system is not stable. Therefore,
it is not realistic to use 500 SAVs to serve the simulated population.

Based on the results in Table 1, the average waiting time dimin-
ishes when more SAVs are added into the system. The reduction in
average waiting time per added SAV decreases from 7.32 to 0.12 s
when number of vehicles in the system is increased from 550 to 800.
When there are more than 700 vehicles in the system the reduction
in average waiting time is smaller than one second per added SAV.
This indicates that the efficiency of adding SAVs to reduce expected
waiting time is very low once there are 700 vehicles in the system.

The simulation results also indicate that the parking demand
is higher in the center of the simulated area, as shown in Fig. 4.
Additionally, the larger the fleet size of the system, the larger the
demand gap between the urban center and urban fringe area. This is
attributed to the fact that we assumed the trips have a tendency to
end in the central area before noon. Thus, based on this simulation
result, the parking demand may concentrate in the areas where a
large amount of trips are attracted to, if no operation strategy is
implemented to ask vehicles to reallocate themselves.

Studies have shown that dynamic ride-sharing service is
expected to be more affordable and environment friendly com-
pared to non-ridesharing systems (Noland et al., 2006; Chan &
Shaheen, 2012). Thus, we continue to explore whether introduc-
ing dynamic ride-sharing can help further reduce the fleet size and
parking demand while maintaining the level of service for the SAV
system. The results are elaborated in the following section.

5.2. Impact of ride-sharing and client’s preference on urban
parking demand

In the ride-sharing scenario, we first explore how the level of
willingness to share (i.e. the percentage of population who are
willing to share rides with strangers) may affect the total daily
parking demand and service quality of the SAV system. Scenarios
with different levels of willingness to share from 25% to 100% with

increments of 25% are tested. We start with the assumption that
all clients value their time the most. Each client will be assigned
with an SAV with the least wasted time cost to accommodate their
service preference.
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The results of above scenarios, as illustrated in Fig. 5, indicate
hat the total daily parking demand is not sensitive to the level
f willingness to share. The error bars in the chart represent day-
o-day standard deviations. T-tests are conducted between results
ased on various levels of willingness to share and the test results

ndicate that the difference between various trend lines are not sta-
istically significant. Such outcome is heavily influenced by the fact
hat we always assign the SAVs with the least potential time cost
o each customer. In other words, the client-SAV match center may
lways prioritize an empty SAV for each client to avoid additional
etour time costs. Therefore, even if people are willing to share,

imited number of trips are linked together given the least travel
ime cost assignment method. Under this scenario, less than 10%
f all the generated vehicle trips are actually linked trips across all
evel of willingness to share and SAV fleet sizes. The percentage of
inked trips reduces from 9.7% to 6.3% when the fleet size increases
rom 500 to 800 SAVs, as there are even less motivations to share
ides when there are more than sufficient number of SAVs in the
ystem.
However, considering the needs of different clients in actual cir-
umstances, assigning SAV with least time cost may not always be
n ideal way to assign vehicles. For instance, least wasted time cost
ased vehicle assignment method may not be appealing for people
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Fig. 5. Total parking demand after ridesharing (ass
ng demand by SAV fleet size.

who have a constrained budget. For this type of clients, the most
desirable assignment algorithm is matching them with the least
out of pocket cost SAV via maximizing the shared miles. The wait-
ing and detour time costs are ignored in such assignment algorithm.
Meanwhile, for a majority of the population the ideal SAV may be
the one that can minimize the total SAV cost (i.e. the combination of
time and travel cost). In this study, we also explored how the above
two types of client-preferences-based vehicle assignment methods
may affect the daily parking demand.

The results for the least travel cost and least total cost scenarios
are plotted in Fig. 6. In the least travel cost SAV assignment sce-
nario, the total daily parking demand is highly sensitive to the level
of willingness to share. The more people who are willing to share,
the less parking demand will be needed. It is also noticed that the
reduction increases significantly when more than 50% of the pop-
ulation are willing to share. This suggests that to implement the
dynamic ride-sharing SAV system, a critical mass of population is
required to magnify the benefits offered by the system.

The results from least total cost scenario generally fall between

the results from least travel cost and least time cost scenarios. The
results indicate that the parking demand will decrease when the
level of willingness to share become higher. However, the reduction
is not as significant as in the least travel cost scenario. In this model,

750 800

0% willing to share

25% willing to share

50% willing to share

75% willing to share

100% willing to share

ign least time cost SAV to serve each client).
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Fig. 6. Total daily parking demand by SAV fleet size for least travel

he reduction in parking demand is closely associated with how
uch people value their time. Thus, the small reduction in parking

emand after ridesharing is due to the fact that people value their
ime based on their hourly salary. However, if the perceived time
ost of travel is less than the hourly salary, then more reduction
n parking demand can be expected in this scenario. However, the

ost reduction is not going to be larger than the least travel cost
cenario.

Assuming that the least total cost assignment method is accept-
ble for most clients, we adopt that vehicle–client match method
n the scenarios where ridesharing service is provided.

The spatial distribution of the demand for parking with 700 SAVs
ith various levels of willingness to share and where everybody
refers the least total cost SAV system, is shown in Fig. 7. As seen

n this figure, the most significant reduction of parking demand

ccurs in the urban fringe area once people start to share rides
ith others. Also notable from the figure is that even with reduction

n the overall parking demand, the parking demand in the center

Fig. 7. Spatial distribution of parking demand
SAV Fleet Size

ssignment (Left) and least total cost assignment (Right) scenarios.

of the simulated area remains higher than the rest of the study
area.

Finally, we compared the average waiting time of the dynamic
ridesharing system with the non-ridesharing system and the
results are illustrated in Fig. 8 (left). The average waiting time for
all trips seems to be reduced dramatically with the increase of
ridesharing, especially when there are less than 700 SAVs in the
system. The results are expected, as in the no-ridesharing scenario
a client has to wait for the next empty vehicle. However, in the
ride-sharing scenario, the waiting time can be significantly reduced
since the client is willing to avail of an SAV assigned to another
agent who is also willing to share. Thus, ride sharers can expect
shorter wait times during the peak hours than other riders who
want the SAV to themselves.

Controlling for the number of vehicles in the system, the aver-

age detour time for shared rides decreases with increasing levels of
willingness to share, as shown in Fig. 8 (right). This can be predicted
since higher rates of participation in dynamic ridesharing service

by different level of willingness to share.
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Fig. 8. Average waiting an

mproves the possibility of finding a better match for shared rides.
owever, the average detour time declines more slowly when more
eople start to share rides. The most significant reduction is found
etween 25% willingness to share and 50% willingness to share sce-
arios. In addition, it is observed that when there are more than
ufficient number of vehicles in the system, the benefit of rideshar-
ng disappears. This result can be observed in the scenario when
here are more than 750 SAVs in the system. In this case, both
verage waiting time and detour time change insignificantly for dif-
erent levels of willingness to share. Thus, the fleet size should be
arefully considered when designing an SAV system to encourage
ide-sharing behavior.

The simulation results also suggest that less SAVs will be
equired to serve the participating clients if they are willing to
hare. For instance, if 100% of the simulated vehicle-trips are shared
nd we want to constrain the average waiting and detour time to
pproximately 2 min, then 600 SAVs will be quite sufficient to serve
he population. However, this level of willingness to share will be
ifficult, if not impossible, to achieve in the near future. Therefore,
e select 50% of population as willing to share and 650 vehicles as

he default setting for further scenario development. Under this set-
ing, the average total delay time is 2.36 min, which is only around
alf a minute longer than the average waiting time in the 700-SAV
No-sharing Scenario. However, the ridesharing system is able to

educe the SAV fleet size by 7% from 700 to 650.

.3. Impact of vehicle cruising on urban parking demand

In this study, we also considered the possibility of using empty
ehicle cruising strategy to further reduce the parking demand and
mprove the service quality. In this scenario, the SAVs will continue
elocating themselves to places where the anticipated number of

lients is high while the existing number of SAVs is low. Different
mpty cruising time threshold is set between 5 min and 30 min to
etermine the relationship between parking demand and empty
ruising time.

able 2
aily parking demand and VMT generation by empty cruising time (650 SAV, 50% willing

Empty cruising time Daily parking demand [Std. Dev.]

No cruising 3346 [36.2]
5-min cruising 2972 [32.4]
10-min cruising 2676 [26.8]
15-min cruising 2460 [17.2]
20-min cruising 2296 [22.4]
30-min cruising 2063 [20.4]
SAV Fleet Size

ur time by SAV fleet size.

The results, as shown in Table 2, suggest that longer the empty
cruising time allowed in the system, lower the parking demand. It
is reasonable to expect this result since the SAVs that cruise forever
will not need any parking. We also notice that parking demand falls
more slowly as empty cruising time increases. The parking demand
is reduced by more than 10% when the initial 5-min cruising is
introduced. The reduction rate falls to approximately 4% when the
cruising time increases from 20 to 30 min.

It is also important to note that the parking reduction from
cruising comes at a cost. The total daily VMT of the system will
increase significantly as shown in Table 2. Thus, life cycle energy
consumption and GHG emissions analysis should be performed to
understand the full cost and benefit of the empty vehicle cruising
strategy.

It is also interesting to note that the spatial distribution of par-
king demand changes significantly once the SAVs start to empty
cruise, as illustrated in Fig. 9. The parking demand tends to be
more evenly distributed throughout the study area, the longer the
vehicle cruise. This can be attributed to the fact that the vehicle
empty cruising process is, to some extent, similar to the vehicle
reallocating process, which renders vehicles to be more evenly dis-
tributed within the region. The cruising strategy provides a means
for distributing parking to lower cost areas within the city, instead
of concentrating in the higher cost central areas.

5.4. Simulation results summary

The simulated results are further compared with the business
as usual (BAU) parking demand scenario. We assume that with-
out the SAV system, the 10,000 simulated clients are most likely
to own their own private vehicles. The 2009 NHTS data show that

the average vehicle ownership per licensed driver is 0.99. There-
fore, there will be a need for 9900 private vehicles. Thus based on
our model result, one SAV will be able to replace around 14 pri-
vately owned vehicles, or even more when the level of willingness

to share).

Avg. waiting time [Std. Dev.] Avg. daily VMT [Std. Dev.]

2.36 [0.32] 210,885 [1154]
2.13 [0.31] 243,150 [1718]
1.83 [0.24] 270,523 [1437]
1.81 [0.24] 291,361 [1882]
1.76 [0.23] 313,149 [1647]
1.72 [0.22] 342,976 [2092]
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Fig. 9. Parking demand spatial dist

o share is higher. Shoup (2005)’s study indicates that under urban
ontext 3–4 parking lots will be needed for each private vehicle.
hester, Horvath, and Madanat (2010) estimate the ratio of par-
ing space per private car to be around 3.3. The estimated parking
paces includes all the paid parking, commercial parking, home
pace, work space, and on-street parking. Chester et al. (2010) also
mployed a rule-of-thumb 8-1 space per car ratio, which includes
oth designated and non-designated parking spaces. In this study,
he business as usual parking demand is estimated using space per
ar ratio from 3.0 to 8.0. Based on the simulation results, approxi-
ately 90% of parking demand for the participating clients can be

educed once the SAV system is implemented. Additionally, adding
he ridesharing service into the system may further reduce the par-
ing demand by one percentage point and adding 5-min cruising
peration rule into the system may further reduce parking demand
y another one to two percentage points. The estimation results are
abulated in Table 3.

In sum, the SAV system can help eliminate a significant amount
or parking demand and the benefits of such extensive reductions
n parking are significant. The parking lots are often aesthetically
npleasant and their elimination can result in improving walk-
bility and attractiveness of the area. The decrease in parking
pace requirement may also contribute to alleviating the urban
eat island effect if the impervious surfaces are transformed by
ntroducing natural vegetation. In addition, a significant amount
f built up space can be reclaimed for other uses in central cities
here developed space is at a premium. Therefore, adoption of

AVs can offer multiple opportunities for planning aesthetically

able 3
imulation results vs. BAU parking demand.

Model scenarios Avg. parkin
demand [S

Fleet size Willing to share (%) Empty cruising (min)

700 – – 3566 [32.8
650 50 – 3346 [17.9
650 50 5 2972 [25.1
650 50 10 2676 [19.6
on by vehicle empty cruising time.

pleasing, healthy, and sustainable urban environments in the heart
of the city.

6. Model verification

To verify that the simulation model is programmed without log-
ical errors, we traced the behavior of SAVs in our model and one
scenario is randomly selected to be visualized. The arrows in Fig. 10
indicate the general movement of the selected vehicles every 5 min.
The behaviors of all simulated SAVs seem reasonable, indicating
that the simulation model is logically consistent and correctly pro-
grammed.

We also tested the sensitivity of the model to determine whether
the change of parameters in the model leads to reasonable changes
in the corresponding model outputs. We have already analyzed the
change of average waiting time and daily parking demand, given
different SAV fleet sizes, levels of willingness to share, and empty
cruising times. Here, we highlight other SAV system performance
indicators, such as the number of shared trips, average travel cost
(for ride-sharing scenarios), VMT generation, system delay, and
vehicle utilizations.

Table 4 shows the different system performance indicators
across fleet size. The results suggest that the indicators for sys-

tem service quality, such the percentage of trips delayed by more
than 5 min and peak hour waiting time, are improved dramatically
when the fleet size becomes larger. Additionally, the wasted VMT
during pick up process tends to drop when there are more SAVs in

g
td. Dev.]

Reduction
rate range (%)

Avg. waiting
time [Std. Dev.]

Avg. VMT
[Std. Dev.]

] 87.9–95.5 2.10 [0.30] 221,855 [1678]
] 88.7–95.8 2.36 [0.32] 210,885 [1154]
] 90.0–96.2 2.13 [0.31] 243,150 [1718]
] 91.0–96.6 1.83 [0.24] 270,523 [1437]
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Fig. 10. SAV tracing example (from 3:00pm to 7:30pm, end of evening peak).

Table 4
SAV system performance indicators by fleet size.

Fleet size % Trips delayed by 5+ minutes Peak hour waiting time Pickup VMT (in thousands) Occupied VMT (in thousands)

500 38.6% [0.05] 34.3 [4.06] 33.3 [3.3] 141.9 [0.97]
550 27.1% [0.008] 20.7 [1.26] 24.8 [0.7] 141.9 [0.97]
600 22.7% [0.009] 15.1 [1.35] 21.0 [0.6] 141.9 [0.97]
650 18.5% [0.006] 10.2 [1.45] 18.4 [1.2] 141.9 [0.97]
700 10.2% [0.015] 4.9 [1.30] 13.6 [2.1] 141.9 [0.97]
750 3.9% [0.012] 2.6 [0.43] 9.4 [1.2] 141.9 [0.97]
800 3.0% [0.006] 2.4 [0.16] 8.4 [0.8] 141.9 [0.97]

Table 5
SAV system performance indicators by level of willingness to share (650 SAV in the system and clients prefer least total travel cost).

Level of willingness
to share (%)

% Trips delayed
by 5+ minutes

Peak hour
waiting time

Detour time
(shared trips)

Pickup VMT
(in thousands)

Shared VMT
(in thousands)

No. of shared
rides

Cost per trip mile
(shared trips)

0 18.5% [0.006] 10.2 [1.45] – 18.4 [1.2] – – –
25 15.5% [0.023] 7.4 [1.50] 8.25 [1.37] 14.8 [0.8] 2.2 [0.3] 1417 [255] $0.27 [0.05]

13.7 [0.5] 3.5 [0.8] 2661 [209] $0.25 [0.04]
11.2 [0.9] 4.2 [1.0] 4074 [194] $0.23 [0.04]
10.0 [0.6] 5.5 [1.7] 6264 [119] $0.22 [0.02]
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Table 6
SAV system performance indicators by empty cruising time threshold (650 SAVs,
50% willing to share).

Cruising time % Trips delayed by 5+ minutes VMT (in thousands)

Cruising Pickup

0 12.2% [0.034] – 13.7 [0.5]
5 9.4% [0.031] 29.5 [1.01] 13.5 [1.7]
10 7.2% [0.025] 59.3 [1.33] 12.4 [1.4]
50 12.2% [0.034] 5.5 [1.40] 5.05 [1.25]
75 7.2% [0.017] 3.3 [0.58] 2.95 [0.34]
100 7.1% [0.006] 3.0 [0.15] 2.83 [0.06]

he system as anticipated. The occupied VMT doesn’t change across
ifferent scenarios, as we fixed the random number seed in each
odel run to control the variations in random number generation.

y fixing the random seed for each run we can ensure that the varia-
ions in system performances are only associated with the changes
n fleet size.

The system performance indicators for different levels of will-
ngness to share are displayed in Table 5. As expected, the
ercentage of trips delayed by more than 5 min declines with the

ncrease in people’s willingness to share. The reduction is most sig-
ificant during the peak hours, as the results show the rush hour
verage waiting time is reduced from 10.2 min to approximately
.0 min. This is expected as the ridesharing service actually increase
he service capacity of the system by improving the utilization
f available seat capacity. We also observe an increase in shared
MT and number of shared rides when more people agree to share
ehicles. Furthermore, we find better matches of trips when more
eople choose to share rides, which is reflected in the decline in
etour time and trip costs. Finally, we notice that less pickup VMT

s generated when ridesharing is introduced into the system. This
s due to the fact that SAVs pick up the second client while serving
he first client for the shared rides.

To verify the cruising scenario, we estimated the percentage of
rips delayed by more than 5 min, cruising VMT, and pickup VMT,
s tabulated in Table 6. The results indicate that the system service

uality can be improved slightly by allowing vehicles to navigate
o areas where the demand outstrips supply, as the percentage
f trips delayed by more than 5 min tends to decline with the
ncrease of empty vehicle threshold. We observe that the system
15 6.6% [0.026] 81.2 [1.70] 11.7 [1.8]
20 6.3% [0.029] 99.3 [2.13] 11.2 [1.5]
30 5.8% [0.024] 121.5 [2.20] 11.0 [1.8]

generates more VMT during the cruising process, as we antici-
pated. The results show that the increase of cruising VMT is not
proportional to the increase of allowed cruising time, as when
longer cruising period is allowed, the probability of SAVs being
reassigned to a new client becomes higher, rendering a decrease in
VMT growth. The pickup VMT declines slightly, as the vehicles con-
tinue to allocate themselves to meet potential demands. However,
the decline in pickup VMT is rather small compared to the growth
of cruising VMT. Thus, the system generates more VMT overall.

Finally, we also compared our model outputs with Burns et al.
(2013) and Fagnant and Kockelman’s (2014) results to examine the
reasonableness of our results. Since these studies do not involve
ride-sharing, we only compared no-ridesharing model results. To

make the results comparable, we selected scenarios with similar
fleet size and trip generation ratios. Fig. 11 summarizes the aver-
age waiting time of different scenarios from different studies. The
results indicates that the average waiting time from this study is



44 W. Zhang et al. / Sustainable Cities and Society 19 (2015) 34–45

0

2

4

6

8

10

12

14

20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0

A
ve

ra
ge

 W
ai

tin
g 

Ti
m

e

Trip Generation / Fleet Size

012)

of av

q
t
S
a
a
h
a
O
o
m
e

7

h
p
p
t
a
r
r
fi
t
i
i
h
s
i
t
u
a
i
n
i
M
t
g

8

p
i
i

This Study Burns et al.  Model (2

Fig. 11. Comparison

uite reasonable compared with other studies. The average waiting
ime from Burns et al. (2013)’s study is slightly higher than ours.
uch discrepancy can be attributed to the fact that their model used
n average speed of 20 mph, while our simulation assumed an aver-
ge speed of 30 mph during off-peak hour and 21 mph during peak
our. Fagnant and Kockelman (2014)’s model has smaller aver-
ge waiting time, as their SAVs continuously reallocate themselves.
ur simulation model also generates smaller average waiting time,
nce the vehicle empty cruising strategy is implemented in the
odel. In sum, our model output is quite reasonable compared with

xisting SAV simulation studies.

. Model limitations

Although our simulation model adds more understanding of
ow SAV system may influence future urban parking demand, the
roposed SAV model can still be further improved from several
erspectives. First of all, parking price should be incorporated into
he model framework. The SAVs doesn’t necessarily need to park
t the destination and can navigate to cheaper parking lots in more
emote areas. The behavior will be primarily determined by the
elationship between the costs of gas and pollution and the bene-
ts of lower parking prices. Second, the model can be improved if
he real world network and travel behavior patterns can be applied
n the model. Currently, most of the model inputs are normal-
zed national level data and the simulated participating clients
ave homogeneous socio-economic characteristics throughout the
tudy area. Additionally, although the speed of SAV is different dur-
ng peak and off peak hours, the link level speed doesn’t vary within
he study area. If congestion is considered in the model, then central
rban residents may expect more waiting delays. Finally, the model
lso assumed that people with different socio-economic character-
stics are equally willing to share rides with strangers, which may
ot be the case in real life. Thus future work should be conducted to

ntegrate all the above important factors into the simulation model.
oreover, authors seek to make further efforts to investigate how

he redundant parking spaces can be repurposed to achieve smart
rowth in the future.

. Conclusions
This study developed a simulation model to evaluate the
otential impact of SAVs on urban parking demand. The model

ncorporated three improvements over existing models described
n other studies. First, it operationalized a dynamic ride-sharing
Fagnant and Kockelman Model (2014)

erage waiting time.

system with two agents who are served by one SAV based on each
agent’s preferences for sharing. Second, it tested different vehicle
assignment methods based on clients’ preferences for both out-
of-pocket and time costs to explore system performance. Third,
it examined empty vehicle cruising strategies to determine their
impact on parking demand and the spatial distribution of such
demand.

The no-ride sharing model simulation result shows that the par-
king demand is sensitive to the number of SAVs in the system. To
reduce the parking demand, we may reduce the number of SAVs
within the system. However, the total number of serving vehicles
cannot be too small, otherwise it will deteriorate the service qual-
ity of the system. For the simulated hypothetical grid-based city, at
least 700 vehicles will be needed to maintain the average waiting
time at approximately 2 min.

The ride-sharing model results indicate that parking demand
sometimes will be sensitive to the level of willingness to share rides,
depends heavily on how the system assign the SAVs to serve the
calling clients. If the least time cost assignment method is used,
then the parking demand will only be sensitive to the number of
vehicles in the system. If the least travel cost assignment method
is implemented, then higher level of willingness to share will also
help to reduce the parking demand in a significant manner. The
total least cost assignment method seems to be the most reason-
able. Using the least cost assignment method, the SAV system can
operate with 50 less SAVs in the system compared with no-ride
sharing system, while maintain the average waiting and detour
time to around 2 min.

The vehicle empty cruising model results suggest that we may
further reduce parking demand by sacrificing VMT. However, the
marginal reduction rate of sacrificing VMT diminishes when the
threshold of empty cruising increase. Finally, by comparing all the
above parking demand simulation results with the estimated busi-
ness as usual parking demand, we noticed that up to 90% of parking
demand for the simulated households can be eliminated if we put
700 SAVs in the system. Once those urban parking spaces are no
longer in need, more sustainable designs, such as more green, open,
and human oriented space can be introduced. Planners and local
decision makers may seize this opportunity to guide the city to
develop in a more sustainable way.
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