NRI: INT: COLLAB: Integrated Modeling and Learning for Robust Grasping and Dexterous Manipulation with Adaptive Hands

Kostas Bekris ${ }^{1}$, Abdeslam Boularias ${ }^{1}$ and Aaron Dollar ${ }^{2}$

${ }^{1}$ Department of Computef Science, Rutgers University, New-Brunswick, NJ ${ }^{2}$ School of Engineering, Yale university, New-Haven, CT

Objective

Underactuated hands

- Able to passively adapt to objects of uncertain size and shape.
- Provide good grasping performance without sensing and with open-loop contro
- Enable low cost and compact design.

This project aims for dexterous within-hand manipulation through advanced machine learning and planning tools.

Path planning for within-hand manipulation over

 learned safe states [1]We proposed a framework for tracking a desired path of an object held by an adaptive hand. Given a reference path π^{+}, the objective is to plan a path so as to find a path π^{*} such that

```
\pi*}=\operatorname{argmin}\operatorname{diff}(\pi,\mp@subsup{\pi}{}{+}
```

where $\operatorname{diff}\left(\pi, \pi^{+}\right)$is some similarity measure.
Classification: Data-driven classification process to estimate the probability of failure for given states.

Curve similarity: Dynamic Time Warping (DTW) measures the path difference and minimizes the area between planned and reference curves.
Planning through informed search:
Compared A* and I-SST.
Evaluation function $f(q)=g(q)+h(q)$
Cost $g(q)$ is the DTW of the traversed section.
Heuristic cost $h(q)$ is
$h(q)=\frac{1}{2} \sum_{k=0}^{m}\left(\left\|q-q^{+}\right\|_{2}-\delta k\right)$

Two fingered adaptive hand (Model T42) writing "ISER".
 Random paths to track (pink), executed trajectories with naive planning (blue) and executed
trajectories with I-SST (green). The object drops with naive executions (yellow crosses) while I-SST trajectories with h-SST (green). The
completes the trajectory successfully.

The classifier output for the
exploration direction that exploration direction that (green - normal red - drop)

Learning from transferable mechanics models [2]
Previous work:
Ability to predict modes (normal, drop, stuck, and sliding) with 94\% percent accuracy
However, this model was gripper specific and could not be transferred.
In this work:
Identified a gripper agnostic feature set (including Jacobian Grasp Matrix, and contact curvatures).
Enables to predict modes of grippers with different physical dimensions.

Results

- A classifier was trained on one T42

Predicted modes with around 84% accuracy when tested with two different grippers

Learning the dynamics of an adaptive hand [3]

We learn a stochastic model of the hand automatically from data with minimum user effort. The focus is on identifying the dominant, sensable features required to express the hand's dynamics, thereby enabling the learning of a probabilistic transition model from recorded trajectories.

What are the underlying features that sufficiently describe the configuration of the hand? Object position along with the actuator loads.

Manifold Learning Gaussian Process (MLGP): Diffusion maps are used for efficient local regression.

Failure avoidance: Sparsity analysis identifies failure regions in the observable state space.

Generalization: Ability to generalize to unknown new objects of varying sizes.

Recorded and predicted path using obiect position and actuator loads while comparing EGP and MLGP.

Generalization to novel objects of different diameters.

Closed loop tracking of a rectangle with the transition model.

Group

Rutgers University Avishai Sintov - Post-doc Andrew Kimmel - PhD student Bowen Wen - PhD student Juntao Tan - MSc student

GP distribution.

Yale University
Kaiyu Hang - Post-doc
Berk Calli - Post-doc (now at WPI)
Andrew Morgan - PhD student
Walter Bircher - PhD student

