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Abstract

Following Part I, this paper continues to describe the calculation of the reach sets

and tubes for linear control systems with time-varying coe�cients and ellipsoidal hard

bounds on the controls and initial states. It deals with parametrized families of internal

ellipsoidal approximations constructed such that they touch the reach sets at every point

of their boundary at any instant of time (both from outside and inside respectively).

The surface of the reach tube would then be entirely covered by curves that belong to

the approximating tubes. This allows exact parametric representation of reach tubes

through families of internal ellipsoidal tubes as compared with earlier methods based

on constructing one or several isolated approximating tubes. The method of external

and internal ellipsoidal approximations is then propagated to systems with box-valued

hard bounds on the controls and initial states. The approach opens new routes to the

arrangement of e�cient numerical algorithms.

Introduction

This papers continues description of ellipsoidal approximations to reach sets for continuous-time

systems. Such problems arise in many applied problems of control and computation, being an

object of special interest [19], [4], [7], [6], [14], [17].

It turned that ellipsoidal methods make possible exact representations of the reach sets and tubes

for linear systems through parametrized families of external and internal ellipsoids if these are

constructed following the techniques of [13]. But to ensure e�ective calculation, it is important to

single out the families of \tight" ellipsoidal approximations to the reach tube that would touch its

surface at every point along specially selected cyrves and would thus totally cover this tube. A crucial

point is also to indicate such a parametrized variety of curves along which the respective calculation
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could be done recurrently in time. A positive answer to the latter problem is given in PartI of this

paper for external ellipsoidal approximations which were investigated in detail.

This paper shows that similar properties are also true for internal approximations which are often

required whenever one has to deal with guaranteed performance. This is a more di�cult problem,

though. A single volume-optimal internal ellipsoid was studied in [2]. Special types of internal

ellipsoidal approximations were suggested in [1]. However, it was indicated in [13] that an exact

representation of reach sets and reach tubes is indeed possible through the union of a family of

internal ellipsoids. The important pending question was how to e�ectively compute a family of

tight internal approximations of reach tubes or their neighborhoods through such ellipsoidal-valued

functions that would touch their boundary of from inside at any point on its surface.

Thus, in the present Part II of this paper we study the following question: given a reach tube (or its

neighborhood) and any smooth curve on its surface, does there exist an ellipsoidal-valued tube that

satis�es the following two properties: on one hand, the ellipsoidal tube is contained inside the reach

tube, being an internal approximation, and on the other it touches the boundary of the reach tube

precisely along the prespeci�ed continuous curve on its surface? Here it is shown that the solution

to the problem exists for any given curve. However, the computational burden for the calculation

of the solution may be heavy due to additional recalculations required to be done \afresh" at each

instant of time. It is shown that similar to the \external" case there exists a family of \good" curves

which allow the solution of the indicated problem recurrently, without such additional recalculation.

This again is when the given curve is a system trajectory. By covering the entire surface of the reach

tube with such curves, we are then also able to produce the whole reach tube, through the solutions

of the internal ellipsoidal approximation problem while minimizing the computational burden.

In order to treat the \internal" case this paper introduces new relations for internal ellipsoids, which

are di�erent from those introduced in books [1], [2], [13].

Let us start with th whole issue of internal ellipsoids by introducing some relations di�erent from

those of either [1], [2], [13].

Throughout the present Part II of the paper we use the notations introduced in Part I.

1 The internal ellipsoids

Consider �rst the sum of two ellipsoids E(0; Q1); E(0; Q2), taking as an estimate the ellipsoid

E(0; Q[S]), where

Q�[S] = (S1Q
1=2
1 + S2Q

1=2
2 )0(S1Q

1=2
1 + S2Q

1=2
2 );

and S1; S2 are orthogonal matrices [5], so that S01S1 = I = S
0

2S2.

Then

(�(ljE(0; Q�[S])))
2 = (l; Q�[S]l)

= (l; Q1l) + (l; Q2l) + 2(S1Q
1=2
1 l; S2Q

1=2
2 l)

� (l; Q1l) + (l; Q2l) + 2(l; Q1l)
1=2(l; Q2l)

1=2 = ((l; Q1l)
1=2 + (l; Q2l)

1=2)2

for any vector l 2 IRn with equality attained if and only if

S1Q
1=2
1 l = kS2Q

1=2
2 l
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for some value k. The last assertion follows from the H�older inequality.

Similarly, for the sum of m ellipsoids E(0; Qi); i = 1; :::;m we arrive at the proposition.

Theorem 1.1 The following formula is true:

E�(0; Q[S(m)]) �

mX
i=1

Ei(0; Qi);

where

Q[S(m)] = (

nX
i=1

SiQ
1=2)0(

mX
i=1

SiQ
1=2);

S[(m)] = fS1; : : : ; Smg and S
0

iSi = I are any orthogonal matrices.

Indeed, using the H�older inequality, we come to the relations:

(�(ljE(0; Q�[S(m)])))2 = (l; Q�[S(m)]l) =

mX
i=1

(l; Qil) +

mX
i6=j

(SiQ
1=2
i l; SjQ

1=2
j l)

�

mX
i=1

(l; Qil) +
X
i6=j

(l; Qil)
1=2(l; Qjl)

1=2 = (

mX
i=1

(l; Qil)
1=2)2

for any vector l 2 IRn. This proves the theorem.

Here equality is attained for a given vector l if and only if SiQ
1=2
i l = kijSjQ

1=2
j l; kij = k

�1
ji ; for

some values kij (that depend on l). This happens, in its turn, i� there exists a vector p 6= 0 and and

an array of numbers �i such that

SiQ
1=2
i l = �ip; i = 1; : : : ;m: (1)

Therefore, one may formulate the next proposition.

Theorem 1.2 The inequality

(l; Q[S(m)]l) = (l; (

mX
i=1

SiQ
1=2)0(

mX
i=1

SiQ
1=2)l) �

mX
i=1

(l; Qil)
1=2

; (2)

true for any l 2 IRn
and any array S[m] of orthogonal matrices Si; i = 1; : : : ;m; turns into an

equality for a given l 2 IRn
if and only if the matrices Si are such that (1) is ful�lled for the given l

for some vector p and numbers �i; i = 1; : : : ;m:

The last theorem indicates the tightness conditions for the internal ellipsoidal approximation

E�(0; Q[S(m)]) of the sum of ellipsoids E(0; Qi).

Remark 1.1 The previous relations were derived for the sum of ellipsoids centered at point qi = 0.

The result remains true, however, if we deal with ellipsoids E(qi; Qi), where it may be that qi 6= 0.

Then one should just substitute E�(0; Q�[S(m)]) by E�(q(m); Q�[S(m)]), where

q(m) =

mX
i=1

qi: (3)
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We now look at the internal approximation of the sum

E(0; Q0) +

Z t

t0

E(0; Q(s))ds;

of an ellipsoid E(0; Q0) and a set-valued integral of an ellipsoidal-valued function E(0; Q(s)) with

matrix function Q(s) > 0 continuous in t. Taking the Riemanian sum

I(�N ) =

nX
i=1

E(q(�i); Q(�i))�i; (4)

generated by partition

�N = f�0 = t0; �1; : : : ; �N = tg; �i = �i � �i�1; i = 1; : : : ; N;

we may apply the results of Theorems 1.1, 1.2. We start by constructing the matrix

Q

(N)
�

(t) =

�
S0Q

1=2
0 +

NX
i=1

SiQ
1=2
i (�i)�i

�
0
�
S0Q

1=2
0 +

NX
i=1

SiQ
1=2
i (�i)�i

�
; (5)

which, as we may observe, due to these theorems, satis�es the inequality

(l; Q
(N)
�

(t)l) � ((l; Q0l)
1=2 +

NX
i=1

(l; Q(�i)l)
1=2

�i)
2
; (6)

whatever be vector l 2 IRn. An equality may be reached here for a given l 2 IRn i� the orthogonal

matrices S0; Si are selected such that they satisfy the relations

Si(�i)Q
1=2(�i)l = �(�i)S0Q

1=2
0 l (7)

for some values �(�i); i = 1; : : : ; N:

One may �gure out immediately from (7) that these values actually are

�i(� ) = (l; Q(�i)l)
1=2(l; Q0l)

�(1=2)
; (8)

Further on, passing to the limit in (4)-(6), with

N !1; �[N ] = maxf�iji = 1; : : : ; Ng ! 0;

we come to the following conclusion.

Theorem 1.3 (i) The following inclusion is true

E(0; Q�(t)) � E(0; Q0) +

Z t

t0

E(0; Q(� ))d�;

whatever be the matrix

Q�(t) =

�
S0Q

1=2
0 +

Z t

t0

S(� )Q(� )1=2d�

�
0
�
S0Q

1=2
0 +

Z t

t0

S(� )Q(� )1=2d�

�
; (9)

where S0S
0

0 = I; S
0(� )S(� ) � I are orthogonal matrices that vary continuously in time.
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(ii) For a given vector l 2 IRn
relation (7) turns into an equality i� matrices S0; S(� ) may be chosen

such that equality

S(� )Q1=2(� )l = �(� )S0Q
1=2
0 l (10)

is ful�lled for all � 2 [t0; t] for some scalar function �(� ).

One may note immediately that function �(� ) of (10) is actually

�(� ) = (l; Q(� )l)1=2(l; Q0l)
�(1=2)

:

The proof of this theorem follows by direct limit transition in (4) in view of the inequality

�
l;

�
S0Q

1=2
0 +

Z t

t0

S(� )Q1=2(� )d�

�
0
�
S0Q

1=2
0 +

Z t

t0

S(� )Q1=2(� )d�

�
l

�
(11)

�

�Z t

t0

(l; Q(� )l)1=2d� + (l; Q0l)
1=2

�2

that follows from a limit transition in (5),(6), with �[N ]! 0; N !1.

Remark 1.2. For ellipsoids E(q0; Q0); E(q(t); Q(t)) with nonzero centers q0; q(t) the results of Theorem

7.3 remain true with substitution of E�(0; Q�(t)) by E(q�(t); Q�(t)), where

q�(t) = q0 +

Z t

t0

q(s)ds: (12)

The functions q�(t); Q�(t) may be described by di�erential equations. Thus, di�erentiating Q�(t),

we have
_
Q�(t) = (S(t)Q1=2(t))0Q�(t) +Q�(t)(S(t)Q

1=2(t));

where

Q�(t) = S0Q
1=2
0 +

Z t

t0

S(� )Q1=2(� )d�

Introducing notation

H(t) = Q
�1
�
(t)S(t)Q1=2(t) = Q

�1
�
(t) _Q�(t);

we further come to equation

_
Q�(t) = H

0(t)Q�(t) + Q�(t)H(t); Q(t0) = Q0: (13)

A di�erentiation of (12) also gives

_q�(t) = q(t); q�(t0) = q0: (14)

This may be summarized in the assertion.

Lemma 1.1 The ellipsoid E(q�(t); Q�(t)) may be described by di�erential equations (13),(14).
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Relation (13) allows an expansion

Q�(t+ �) = Q�(t) + �( _Q0

�
Q�(t) +Q�(t)

0 _
Q�);+o(�) (15)

where o(�)=� ! 0 with � ! 0, or an equivalent relation

(l; Q�(t+ �)l) = (l; Q�(t)l) + �
2(l; ( _Q0

�
Q�(t) +Q�(t)

0 _
Q�)l) + o(�; l); (16)

where o(�; l) stands for a function that satis�es o(�; l)=�! 0 with � ! 0, uniformly in fl : (l; l) � 1g.

On the other hand, the relation for Q�(t) of Theorem 1.3 gives

�
2(ljE(0; Q�(t+ �))) = (l; Q�(t + �)l) = (l; Q�(t)l)+ (17)

+

�
l;

�Z t+�

t

S(� )Q(� )1=2d�

�
0

Q�(t) +Q
0

�
(t)

�Z t+�

t

S(� )Q(� )1=2d�

�
l

�
+ o1(t; l)

� (�(ljE(0; Q0)) + +

Z t+�

t0

�(ljE(0; Q(� )))d� )2 = �
2(ljX [t]);

with equality attained for a given vector l (relative to terms of order > 1 in �) i� there exists a

number �(t), such that �Z t+�

t

S(� )Q(� )1=2d�

�
l = �(t)Q�(t)l:

As one may observe, here

�
2(t) = (l; Q(t)l)=(l; Q�(t)l) + o2(t; l):

and also Z t+�

t

S(� )Q(� )1=2d� = _
Q�(t) + o3(t; l):

Since equalities (16),(17) ensure, (relative to terms of order > 1 in �) that E(0; Q�(t+ �)) touches

X [t+ �] at point of support of vector l, we may conclude that _
Q�(t)l = �(t)Q�l or

H(t)l = Q
�1
�

_
Q�(t)l = �(t)l; (18)

where �(t) = (l; Q(t)l)1=2=(l; Q�(t)l)
1=2.

Now we may proceed with the calculation of tight internal approximations.

2 Reachability sets. Internal approximations.

We start with the de�nition of internally tight ellipsoids.

De�nition 2.1 An internal approximation E� is tight in the class E�, if for any ellipsoid E 2 E�,

X [t] � E � E� implies E = E�.
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This paper is concerned with internal approximations, where class E = fE�g is described within the

following de�nition (assuming B = I as mentioned above).

De�nition 2.2 The class E� = fE�g consists of ellipsoids that are of the form E�[t] = E(x?; Q�[t]),

where x
?(t) satis�es the equation

_x? = A(t)x? + q(t); x?(t0) = x

0
; t � t0;

and Q�(t) is of the form (9).

Here Q
0
; Q(� ); � 2 [t0; t] are any positive de�nite matrices with function Q(� ) continuous, S(� ) are

any orthogonal matrices with S(� ) continuous, q(t) is any continuous function.

In particular, this means that if ellipsoid E(p0; P 0) � X [t] is tight in E�, then there exists no other

ellipsoid of type E(p0; kP 0); k > 1 that sati�es the inclusions X [t] � E(p0; kP 0) � E(p0; P 0) (ellipsoid

E(p0; P 0) touches set X [t]).

De�nition 2.3 We shall further say that internal ellipsoids are tightif they are tight in E�.

We actually further deal only with ellipsoids E� 2 E�.

The class E� is rich enough to arrange e�ective approximation schemes, though it does not include

all the possible ellipsoids.

A justi�cation for using class E� is due to the propositions of Theorem 1.3 which also gives conditions

for the internal ellipsoids E(0; Q�(� )) to be tight in the previous sense.

Let us now return to equation

_x = A(t)x+ B(t)u; t0 � t � t1; (19)

at �rst with B(t) � I. (See Remark 2.2 at the end of this section). Then the problem consists in

�nding the internal ellipsoid E(q�(t); Q�(t)) for the set

X [t] = G(t; t0)E(q0; Q0) +

Z t

t0

G(t; � )E(q(t); Q(� ))d�:

The formula of Theorem 7.3 for the matrix Q�(t) will now have the form 1

Q�(t) = (20)

= G(t; t0)

�
Q0S

0

0(t0) +

Z t

t0

G(t0; � )Q
1=2(� )S0(� )d�

�
�

�
S0(t0)Q0 +

Z t

t0

S(� )Q1=2(� )G0(t0; � )

�
G
0(t; t0);

and

q�(t) = G(t; t0)q0 +

Z t

t0

G(t; � )q(� )d�: (21)

Theorem 1.3 now transforms into the following.

1Since for a matrix-valued map X we have XE(q; Q) = E(Xq;XQX 0).
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Theorem 2.1 The internal ellipsoids for the reach set X [t] satisfy relation

E(q�(t); Q�(t)) � (22)

E(G(t; t0)q0; G(t; t0)Q0G
0(t; t0)) + E

�Z t

t0

G(t; � )q(� )d�;

Z t

t0

G(t; � )Q(� )G0(t; � )d�

�
= X [t];

where Q�(t0); q�(t0) are given by (20),(21), with S0; S(� ) being any orthogonal matrices and S(� )

continuous in time.

The tightness conditions now transfer into the next proposition.

Theorem 2.2 For a given instant t the internal ellipsoid E(q�(t); Q�(t)) will be tight and will touch

X [t] at the point of support x
�
of the tangent hyperplane generated by given vector l

�
, namely,

�(l�jX [t]) = (l�; q�(t)) +

Z t

t0

(l�; G(t; � )Q(� )G0(t; � )l�)1=2d� = (23)

�(l�jE(q�(t); Q�(t))) = (l�; q�(t)) + (l�; Q�(t)l
�)1=2 = (l�; x�);

i� S0; S(� ) satisfy the relation

S(� )Q1=2(� )G0(t; � )l� = �(� )S0Q
1=2
0 G

0(t; t0)l
�
; t0 � � � t; (24)

for some function �(� ):

Direct calculation indicates the following.

Lemma 2.1 The function �(� ) of Theorem 2.2 is given by

�(� ) = (l�; G(t; � )Q(� )G0(t; � )l�)1=2(l�; G(t; t0)Q0G
0(t; t0)l

�)(�1=2)
; t0 � � � t: (25)

The previous Theorems 2.1, 2.2 were formulated for a �xed instant of time t and a �xed support

vector l
�. It is important to realize what would happen if l� varies in time.

Problem 2.1.Given a vector function l
�(t), continuously di�erentiable in t, �nd an internal ellipsoid

E(q�(t); Q�(t)) � X [t] that would ensure for all t � t0; the equality

�(l�(t)jX [t]) = �(l�(t)jE(q�(t); Q�(t)) = (l�(t); x�(t)); (26)

so that the supporting hyperplane for X [t] generated by l
�(t), namely, the plane (x�x

�(t); l�(t)) = 0

that touches X [t] at point x�(t), would also be a supporting hyperplane for E(q�(t); Q�(t) and touch

it at the same point.

In order to solve this problem, we shall refer to Theorems 1.1, 1.2. However, the functions S(� ); �(� )

used for the parametrization in (20),(24), should now be functions of two variables, namely, of �; t,

since the requirement is that relation (26) should now hold for all t � t0 ( and therefore S0 should

also depend on t). We may therefore still apply Theorems 1.1, 1.2 but now with S0; S(� ); �(� )

substituted by S0t; St(� ); �t(� ).
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Theorem 2.3 With l = l
�(t) given, the solution to Problem 2.1 is an ellipsoid E(q�(t); Q�(t)) ,

where

Q�(t) = (27)

= G(t; t0)

�
Q

1=2
0 S

0

0t(t0) +

Z t

t0

G(t0; � )Q
1=2(� )S0t(� )d�

�
�

�
S0t(t0)Q

1=2
0 +

Z t

t0

St(� )Q
1=2(� )G0(t0; � )

�
G
0(t; t0):

with S0; St(� ) satisfying relations

St(� )Q
1=2(� )G0(t; � )l�(t) = �t(� )S0tQ

1=2
0 G

0(t; t0)l
�(t); (28)

and S
0

0tS0t = I; S0t(� )St(� ) � I for all t � t0; � 2 [t0; t], where

�t(� ) = (l�(t); G(t; � )Q(� )G0(t; � )l�(t))1=2(l�(t); G(t; t0)Q0G
0(t; t0)l

�(t))(�1=2)
: (29)

The proof follows by direct substitution. The latter relations are given in a \static" form and

Theorem 1.3 indicates that the calculation of parameters S0t; St(� ); �t(� ) has to be done \afresh"

for every new instant of time t. We shall now investigate whether the calculations can be made in

a recurrent form, without having to perform the additional recalculation.

Remark 2.1. In all the ellipsoidal approximations considered in this paper the center of the aprrox-

imating ellipsoid is always the same, being given by q�(t) of (21). The discussions shall therefore

actually concern only the relations for Q�(t).

Remark 2.2. In the case of B(t) 6= I we formally just have to substitute Q(t) for B(t)Q(t)B0(t),

Q
1=2(t) for B(t)Q1=2(t) and q(t) for B(t)q(t) in all the relations of this and later sections, starting the

calculation process from time t � t0 + �; � > 0 rather then from t0. The controllability assumption

of section 1 ensures that intX [t] 6= ; and that the ellipsoids E(q(t); Q�(t)) are nondegenerate.

Remark 2.3. The results of the last two sections are also true for degenerate ellipsoids

E(q0; Q0); E(q(t); Q(t)). This will further allow to treat systems with box-valued constraints.

3 Reachability Tubes. Internal Approximations.

Let us start with a particular function l
�(t), namely, the one that satis�es 2

Assumption 3.1 The function l
�(t) is of the following form l

�(t) = G(t0; t)l, with l 2 IRn
given.

For the time-invariant case l
�(t) = (exp(�A0(t)(t � t0))l:

Substituting l
�(t) in (28),(29), we observe that the relations for calculating St(� ); �t(� ) transform

into

St(� )Q
1=2(� )G0(t0; � )l = �t(� )S0tQ

1=2
0 l; S

0

0S0 = I;S0(� )S(� ) � I (30)

2The formulation of Assumption 3.1 is identical in Parts I and II and so is the assigned numeration

\Assumption 3.1".
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and

�t(� ) = (l; G(t0; � )Q(� )G
0(t0; � )l)

1=2
=(l; Q0l)

1=2
: (31)

Here the known functions used for calculating St(� ); �t(� ) do not depend on t. Therefore, the

unknown functions St(� ); �t(� ) do not depend on t either, no matter what is the interval [t0; t].

Therefore, the lower indices t in S0t; St; �t may be dropped.

Di�erentiating (27) in view of the last remark, we come to

_
Q� = A(t)Q� +Q�A

0(t) + _
Q
0

�
Q� +Q

0

�

_
Q�; (32)

where

Q�(t) = S0Q
1=2
0 G

0(t; t0) +

Z t

t0

S(� )Q1=2(� )G0(t; � )d�;

_
Q�(t) = S(t)Q1=2(t); Q�(t0) = S0Q0

Using the notation

H(t) = Q
�1
�
(t)S(t)Q1=2(t) = Q

�1
�
(t) _Q�(t); (33)

we further come to equation

_
Q� = A(t)Q� + Q�A

0(t) +H
0(t)Q�(t) + Q�(t)H(t); Q(t0) = Q0: (34)

The di�erentiation of (21) also gives

_q� = A(t)q� + q(t); q(t0) = q0: (35)

This leads to the following theorem.

Theorem 3.1 Under Assumption 3.1 the solution to Problem 2.1 is given by ellipsoid

E(q�(t); Q�(t)) where Q�(t); q�(t) are given by equations (34),(35), and the functions S(t); �(t)

involved in the calculation of H(t) satisfy together with S0 the relations (30),(31), where the lower

indices t in S0t; St; �t are to be dropped.

Lemma 3.1 Function H(t) = Q
�1
�
(t)S(t)Q1=2(t) in (33) may be also expressed through equation

_
Q� = Q�A

0(t) + S(t)Q1=2(t); Q�(t0) = S0Q
1=2
0 : (36)

This gives the next result.

Lemma 3.2 The ellipsoid E(q�(t); Q�(t)) of Theorem 3.1 given by equations (35), (34), (33), (36),

depends on the selection of the orthogonal matrix function S(t) and for any such S(t) the inclusion

E(q�(t); Q�(t)) � X [t]; t � t0;

is true with equality (26) attained under conditions (30),(31).

10



Let us now suppose that l(t) of Problem 2.1 is the vector function that generates any continuous

curve of related support vectors on the surface of X [t]. Then one has to use formula (27), having

in mind that S0t; St(� ) depend on t. After a di�erentiation of (27) in t, one may observe that (34)

transforms into

_
Q� = A(t)Q� +Q�A

0(t) +H
0(t)Q�(t) + Q�(t)H(t) + 	(t; �); Q(t0) = Q0: (37)

where

	(t; �) = G(t; t0)

�
Q

1=2
0 (@S00t(t0)=@t) +

Z t

t0

G(t0; � )Q
1=2(� )(@S0t(� )=@t)d�

�
0

�

�
(@S0t(t0)=@t)Q

1=2
0 +

Z t

t0

@(St(� )=@t)Q
1=2(� )G0(t0; � )d�

�
G
0(t; t0):

Lemma 3.3 Under Assumption 3.1 the functional 	(t; �) � 0.

Similarly to Section 3 we come to the proposition.

Theorem 3.2 Let l(t) generate a curve x
�(t) of related support vectors for the sets X [t] that form

a system trajectory of (19) due to some control u(t). Then Assumption 3.1 is satisi�ed (l(t) is a

\good" curve) and the functional 	(t; �) � 0.

We will now demonstrate the internal approximations for the system of Example I. 3

4 Example II

Consider again the system of Section 5, Part I (see formula (53) of Part I).

_x1 = x2; _x2 = u;

x1(0) = x
0
1; x

0
2(0) = x

0
2; juj � �; � > 0:

Here

x1(t) = x
0
1 + x

0
2t+

Z t

0

(t � � )u(� )d�;

x2(t) = x
0
2 +

Z t

0

u(� )d�:

Assume X0 = B�(0) = fx : (x; x) � �
2g. Then the support function

�(ljX [t]) = maxf(l; x(t))j juj � �; x
0 2 X

0g

3Example I was given in Part I of this publication.
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of the reach set X [t] = X (t; 0; X0) may be calculated directly and is given by

�(ljX [t]) = �(l21 + (l1t+ l2)
2)1=2 +

Z t

0

jl1(t � � ) + l2jd�;

The boundary @X [t] of the reach set X [t] may be calculated from formula (54) of Part I.

Solving the problem for any t > 0, let us set l0 = l(t).Then

x1(t) = �l1(t)=(l
2
1(t) + (l1(t)t + l2(t))

2)1=2 � �(t2=2� (tl1(t) � l2(t))
2
=l

2
1(t)); (38)

x2(t) = �(l1(t)t + l2(t))=(l1(t)
2 + (l1(t)t + l2(t))

2)1=2 � 2�(l2 � tl1(t))=l1(t) � �t;

Proceeding further, we shall select l(t) satisfying Assumption 3.1, namely, as l(t) = e
�A0t

l
�. This

transforms here into l1(t) = l
�

1; l2(t) = l
�

2 � tl
�

1 and (38) transforms into

x1(t) = �l1(t)=(l
�2
1 + l

�2
2 )1=2 � �(t2=2� (tl�1 � l

�2
2 (t))2=l�21 (t)); (39)

x2(t) = �l2=(l
�2
1 + l

�2
2 )1=2 � 2�(l�2 � tl

�

1)=l
�

1 � �t:

The last relations depend only on the two-dimensional vector l�. They produce a parametric family

of curves fx1(t); x2(t)g that cover all the surface of the reach tube X [t] so that vectors x(t) =

fx1(t); x2(t)g are the points of support for the hyperplanes generated by vectors l(t) = fl�1;�tl
�

1+l
�

2g.

The reach tube that starts at X0 6= 0 with these curves on its surface is shown in �g.1.

Let us now construct the tight internal ellipsoidal approximations for X [t] that touch the boundary

@X [t] from inside at points of support taken for a given vector l = l
�.

The support function �(X [t]) may be rewritten as

�(X [t]) = �(l�; Q(t)l�)1=2 + �

Z t

0

(l�; Q(� )l�)1=2d�; (40)

where

Q(� ) =

�
�
2
; ��

��; 1

�

and Q
1=2(� ) = Q(� )(1 + �

2)�1=2.

According to (27) and in view of Assumption 3.1, we have (taking S0 = I),

Q�(� ) =

�
�I +

Z t

0

Q
1=2(� )S0(� )d�

�0�
�I +

Z t

0

S(� )Q1=2(� )d�

�
; (41)

where matrix S(� ) must satisfy the conditions

S
0(� )S(� ) = I; S(� )Q1=2(� )l� = ��(� )l�; � � 0: (42)

for some �(� ) and calculations give

��
2(� ) = (l�; Q(� )l�)(l�; l�)�1 = (l�1� � l

�

2)
2(l�21 + l

�2
2 )�1

: (43)
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Denote

p(� ) = Q
1=2(� )l� =

�
�
2
l
�

1 � � l
�

2

�� l�1 + l
�

2

�
(1 + �

2)�1=2 = rp(1 + �
2)�1=2

�
cos�p(� )

sin�p(� )

�
;

where

rp(� ) = jl�1� � l
�

2j(1 + �
2)1=2; �p(� ) = � arccos(�2l�1 � � l

�

2)=rp = arccos(�=(1 + �
2)1=2)

and also

l
� = (l�; l�)1=2

�
cos�l(� )

sin�l(� )

�
; �l = � arccos(l�1=(l

�2
1 + l

�2
2 )1=2):

Selecting further the orthogonal matrix-valued function S(� ) as

S(� ) =

�
cos�(� );� sin�(� )

sin�(� ); cos�(� )

�
;

we may rewrite the second relation of (42) as�
cos(�p(� ) + �(� ))

sin(�p(� ) + �(� ))

�
rp(� )(1 + �

2)1=2 = ��(� )(l�21 + l
�2
2 )1=2

�
cos�l(� )

sin�l(� )

�
: (44)

where � 2 [t0; t]. Here �(� ) has to be selected from the equality

�p(� ) + �(� ) = �l(� ); � 2 [t0; t]; (45)

and �(� ) is given by (43).

Equations (44), (45) need no recalculation for new values of t.

Thus we have found an orthogonal matrix function S(� )

S(� ) =

�
cos(�l(� ) � �p(� ));� sin(�l(� )� �p(� ))

sin(�l(� ) � �p(� )); cos(�l(� )� �p(� ))

�
;

that depends on l
�, is continuous in � and satis�es (44).

Matrix Q�(t) may now be calculated from the equations

_
Q� = _

Q
0

�
(t)Q�(t) + Q�(t) _Q�(t); Q(0) = �

2
I;

where
_
Q� = S

0(t)Q1=2(t); Q�(0) = �I:

The internal ellipsoids for the reach set X [t] = X (t; 0; X0) are shown in �gures 2-4 for X0 = E(0; �I)

with epsilon increasing from � = 0 (�g.2) to � = 0:175 (�g.3), and � = 1 (�g.4). The tube in �g.1

corresponds to the epsilon of �g.3. One may also observe the exact reach sets, X (t; 0; 0) taken for

� = 0, inside the sets X (t; 0; X0) = X [t] in �gures 3,4.
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We will now pass to the description of ellipsoidal approximations for systems with box-valued con-

straints on the controls and initial values.

5 Box-valued constraints

Let us now assume that system (19) is subjected to hard bounds of the \box" type, namely,

u(t) 2 P(t); x(t0) 2 X
0
;

where

P(t) = fu 2 IRm : jui � u
0
i j � �i(t)g; �i(t) � 0; (46)

X 0 = fx 2 IRn : jxj � x
0
j j � �jg; �j � 0

i = f1; : : : ;mg; j = f1; : : : ; ng:

and u
0
i ; x

0
j are given.

Will it be possible to use ellipsoidal approximations for the respective reach sets now, that P;X 0

are not ellipsoids? To demonstrate that this is indeed possible, we proceed as follows.

Let us de�ne a box P with center p as P = B(p; P ) where P = fp(1); : : : ; p(n)g is an array of n

vectors (\directions") p(i) such that

B(p; P ) = fx : x = p+

nX
i=1

p
(i)
�i; �i 2 [�1; 1]g:

Then box P(t) of (46) may be presented as P(t) = B(u0(t); P (t)), where P = fp(1); : : : ; p(n)g; p(i) =

�i(t)e
(i) and e(i) is a unit ort oriented along the axis 0xi. Box B(u0(t); P (t)) is a rectangular

parallelepiped.

A linear transformation T of box B(p; P ) will give

TB(p; P ) = B(Tp; TP )

Thus, in general, box B(Tu0(t); TP (t)) will not be rectangular. Let us now approximate a box by a

family of ellipsoids.

Taking set B(0; P ), we may present it as the sum of m degenerate ellipsoids E(0; Qii), where

Qii = qiie
(i)e(i)

0

; qii = �
2
i

Here Qii is a diagonal matrix with diagonal elements qkk = 0; k 6= i; qii = �
2
i ; (its only nonzero

element is qii = �
2
i ).

Then

B(0; P ) =

mX
i=1

E(0; Qii) � E(0; Q(p));
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where p = fp1; : : : ; pmg and

Q(p) =

� mX
i=1

pi

�� mX
i=1

p
�1
i Qii

�
; (47)

These relations were usually used for nondegenerate ellipsoids,(see [13], section 2.7). However, the

application of Lemma 3.2.1 , [13], indicates that it is also true for the degenerate case. (The proof

is similar to the one in [13]).

Given vector l 2 IRm, take p = fp1; : : : ; pmg as

pi = jlij�i if li 6= 0; (48)

pi = �
2(m � k)�1(

mX
i=1

jlij�i)
�1=2jjljj2 if li = 0:

Here jjljj2 =
Pn

i=1 l
2
i ; k is the number of nonzero coordinates lj 6= 0 of l. Then, selecting p as in

the previous lines, we have, assuming pi 6= 0 for i = 1; :::; k and pi = 0 for i > k,

�
2(ljQ(p)) = (l; Q(p)l) = (

mX
i=1

pi)(l; (

mX
i=1

Qiip
�1
i l) (49)

= (

kX
i=1

jlij�i +

mX
i=k+1

pi)(

kX
i=1

jlij�i) = (

kX
i=1

jlij�i)
2 + �

2jjljj2

� (

kX
i=1

jlij�i)
2 = �

2(ljB(0; Q));

so that

�

2(ljQ(p))� �

2(ljB(0; Q)) � �

2jjljj2: (50)

Note that with � > 0 the matrix Q(p) is nondegenerate.

However, if we allow � = 0 and take p as in (48), then (50) will turn into an equality, but Q(p) will

be degenerate. The set E(0; Q(p)) will be an elliptical cylinder.

Theorem 5.1 (i) An external ellipsoidal approximation

B(0; P ) � E(0; Q(p))

is given by ellipsoid E(0; Q(p)), where Q(p) is given by (47).

(ii)With p selected according to (48), the inequality (50) will be true. If one takes � = 0 in (48), then

(50) turns into an equality. However, the ellipsoid E(0; Q(p)) then becomes degenerate (an elliptical

cylinder).

A similar approximation is true for box B(0; X) = X 0.

Lemma 5.1 Under a linear transformation T we have

TB(0;Q) � E(0; TQ(p)T 0) (51)

This follows directly from the above.
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6 Integrals of box-valued functions

Consider a set - valued integral Z �

t0

B(0; B(t)P (t))dt (52)

and a partition �N similar to the one of Section 2, Part I. Here P (t) is an m�m diagonal matrix,

as before, B(t) is a continuous n�m matrix.

Then Z �

t0

B(0; B(t)P (t))dt = lim

NX
i=1

mX
j=1

E(0; B(ti)Qjj(ti))B
0(ti))�i

with N !1; �N ! 0. Applying again the formula for the external ellipsoidal aprroximation of the

sum of ellipsoids, we have

NX
i=1

mX
j=1

E(0; B(ti)Qjj(ti))B
0(ti))�i � E(0; X+N (pN [�]));

X+N (pN (�))) =

� NX
i=1

mX
j=1

pj(ti)

�� NX
i=1

mX
j=1

p

�1
j (ti)Qjj(ti)

�
; pj(ti) > 0:

Here pN [�] = fpj(ti) jj = 1; : : : ;m; i = 1; : : : ; Ng:

Taking pj(ti) to be the values of continuous functions pj(t); j = 1; : : : ;m; and passing in the

previous relation to the limit with N !1; �[N ]! 0, we come to the next conclusion.

Lemma 6.1 The following inclusion is trueZ �

t0

B(0; B(t)P (t))dt � E(0; X+(�; p[�])dt (53)

X+(p[�]) =

nX
j=1

� �Z
t0

pj(t)dt

�� nX
j=1

Z �

t0

p

�1
j (t)B(t)Qjj(t)B

0(t)dt

�

for any continuous functions pj(t) > 0.

Here p[�] = fpj(�) jj = 1; : : : ;m; t 2 [t0; � ]g:

For a nonrectangular box T (t)B(0; P (t)) = B(0; T (t)P (t)) and a nonzero box T0B(0; X
0) =

B(0; T0X
0) in a similar way we have

Theorem 6.1 The following inclusion is true

X [� ] = B(0; T0X
0) +

Z �

t0

B(0; T (t)B(t)P (t))dt � E(0; X+(�; p[�])) (54)

18



where

X+(�; p[�]) =

� nX
k=1

p

(0)

k +

mX
j=1

�Z
t0

pj(t)dt

�
� (55)

�

� nX
j=1

�kp
(0)�1

k T0X
0
kkT

0

0 +

mX
j=1

Z �

t0

�jp
�1
j (t)T (t)B(t)Qjj(t)B

0(t)T 0(t)dt

�
= X+(�; p[�]):

Here p[�] = fp
(0)

k ; pj(�) j k = 1; : : : ; n; j = 1; : : : ;m; t 2 [t0; � ]g:

In order that an equality

�(ljB(0; T0X
0)) +

Z �

t0

�(ljB(0; T (t)B(t)P (t)))dt = �(ljE(0; X+(�; p[�]))) (56)

would be possible for a given l 2 IRn, we would formally have to choose X+(�; p[�]) taking

pj(t) = �j(l; T (t)B(t)Qjj(t)B
0(t)T 0(t)l)1=2; p

(0)

k = �k(l; T0X
0
kkT

0

0l)
1=2

: (57)

But a nondegenerate matrix X+(�; p[�]) would be possible only if pj(t) 6= 0 almost everywhere and

p

(0)

k 6= 0. The equality is then checked by direct calculation.

Lemma 6.2 In order that for a given l 2 IRn
there would be an equality (56), it is necessary and

su�cient that pj(t); p

(0)

k would be selected according to (57) and both of the conditions pj(t) 6= 0

almost everywhere and p

(0)

k 6= 0 would be true.

Otherwise, either an equality (56) will still be ensured, but with a degenerate E(0; X+(�; p[�])), or,

for any � given in advance, an inequality

�
2(ljX+(�; p[�]))� (�(ljB(0; T0X

0)) +

Z �

t0

�(ljB(0; T (t)B(t)P (t)))dt)2 � �
2jjljj2 (58)

may be ensured with a nondegenerate E(X+(�; p[�])).

This may be done by selecting

p[�] = p

�[�] = fp
(0�)
k ; p

(�)
j (�) j k = 1; : : : ; n; j = 1; : : : ;m; t 2 [t0; �; ]g

as

p

(�)
j (t) = �j(l; T (t)B(t)Qjj(t)B

0(t)T 0(t)l)1=2+(�2jjljj2)

�
m(��t)

mX
j=1

�j(l; T (t)B(t)Qjj(t)B
0(t)T 0(t)l)1=2

�
�1

;

p

(0�)
kk = �k(l; T0X

0
kkT

0

0l)
1=2 + (�2jjljj2)(n

nX
k=1

�k(l; T0X
0
kkT

0

0l)
1=2)�1

:

It may be useful to know when pj(t) 6= 0 almost everywhere .
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Lemma 6.3 In order that pj(t) = (l; T (t)B(t)Qjj(t)B
0(t)T 0(t)l)1=2 6= 0 almost everywhere, for all

l 2 IRn
, it is necessary and su�cient that functions T (t)B(t)e(j) would be linearly independent .

(The j-th column of T (t)B(t) would consist of linearly independent functions).

This follows from the de�nition of linearly independent functions.

Note that with � = 0 we have

� nX
k=1

p

(0)

k +

mX
j=1

�Z
t0

pj(t)dt

�
= (l; X+(�; p[�])l)

1=2
; (59)

The parameters of the ellipsoid E(0; X+(�; p[�])) may be expressed through a di�erential equation.

Taking X+[� ] = X+(�; p[�]), di�erentiate it in � . We get

_
X+ =

� mX
j=1

pj(� )

�� nX
k=1

p

�1
k T0XkkT

0

0 +

mX
j=1

�Z
t0

p

�1
j (t)T (t)B(t)Qjj(t)B

0(t)T 0(t)dt

�

+

� nX
k=1

p

(0)�1

k +

mX
j=1

�Z
t0

pj(t)dt

�� mX
j=1

p

�1
j (� )T (� )B(� )Qjj(� )B

0(� )T 0(� )

�

Denoting

�j(� ) = pj(� )

� nX
k=1

p

(0)

k +

mX
j=1

�Z
t0

pj(t)dt

�
�1

= �jjlj j(l; X+[� ]l)
�1=2

;

X
0
+ =

nX
k=1

�

(0)�1

k T0XkkT0; �

(0)

k = p

(0)

k

� nX
k=1

p

(0)

k

�
�1

;

rearranging the coe�cients similarly to Section 3 of Part I, we come to

_
X+[� ] =

� mX
j=1

�j(� )

�
X+[� ] +

mX
j=1

�
�1
j (� )T (� )B(� )Qjj(� )B

0(� )T 0(� ); X+[t0] = X
0
+ (60)

Remark 6.1. If boxes B(p(t); P (t));B(x0; X0) have nonzero centers p(t), then all the previous rela-

tions hold with centers of ellipsoids changing from 0 to x0(t), where

_x0 = B(t)p(t); x(t0) = x
0
;

so that E(0; X+(�; p[�])) turns into E(x
0(t); X+(�; p[�])).
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Theorem 6.2 (i) The matrix X+(�; p[�]) of the external ellipsoid E(x
0(t); X+(�; p[�])). that ensures

the inclusion (54) satis�es the di�erential equation and the tinitial condition (60).

(ii) The ellipsoid E(x0(t); X+(�; p[�])) ensures the equality (56) (namely, E(x0(t); X+(�; p[�])) touches

set X [� ] of (54) along the direction l), if parameters p[�] are selected as in (57) and �j(t) are de�ned

respectively, for all t 2 [t0; � ], with �

(0)

k 6= 0. Then E(x0(t); X+(�; p[�])) is nondegenerate for any l.

(iii) In order that E(x0(t); X+(�; p[�])) would be nondegenerate for all l, (with box B(x0; X0) = fx0g

being a singleton), it su�ces that functions T (t)B(t)e(j) would be linearly independent on [t0; t1].

(iv) In general, for any given �, selecting �
(�)
j (t); �

(0�)
k similarly to �j(t); �

(0)

k , but with pj(t); p

(0)

k

substituted for p
(�)
j (t); p

(0)�)
k , one is able to ensure the inequality (58).

We may now proceed with the approximation of reach sets for system (19).

7 Reach tubes for box-valued constraints. External approx-

imations

Consider system (19) under box-valued constraints (46). Its reach set will be

X �[t] = G(t; t0)X [t]

where

X [t] = B(x0; X0) +

tZ
t0

G(t0; s)B(s)B(u
0(s); P (s))ds; (61)

Let us �rst apply the results of the previous section to the approximation of X [t]. Taking T (s) =

G(t0; s); T0 = I, we have

X [t] � E(x0(t); X+[t]));

where

_
X+[t] =

� mX
j=1

�j(t)

�
X+[t] +

mX
j=1

�

�1
j (t)G(t0; t)B(t)Qjj(t)B

0(t)G0(t0; t); (62)

with initial condition

X+[t0] =

nX
k=1

�

(0)

k X
0
kk; (63)

and with x
0(t) evolving due to equation

_x0 = A(t)x0 +B(t)u0(t); x(t0) = x
0
: (64)

Further on, denoting X
�

+[t] = G(t; t0)X+[t]G
0(t; t0), we obtain

X �

+[t] � E(x0(t); G(t; t0)X+[t]G
0(t; t0)) = E(x0(t); X�

+[t]); (65)

where now

_
X

�

+[t] = A(t)X�

+ +X
�

+A
0(t)+

� mX
j=1

�
�

j (t)

�
X+[t]+

mX
j=1

�

��1
j (t)B(t)Qjj(t)B

0(t); ; X0
+ = X

�

+[t0]: (66)
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Theorem 7.1 The inclusion (65) is true, whatever be the parameters �j(t) > 0; �k > 0 of the

equation (66).

Let us now presume that Assumption 3.1 is ful�lled :the vector function l(t) along which we would

like to ensure the tightness property is taken as l(t) = G(t0; t)l; l 2 IRn.

Then, following the schemes of sections 3, 4 , Part I, we come to the following results.

Theorem 7.2 Under Assumption 3.1, in order that the equality

�(ljX [� ]) = �(ljE(x0(� ); X+(�; p[�]))

would be true for a given \direction" l, the external ellipsoids E(x0(� ); X+(�; p[�])) should be taken

with

�
�

j (t) =
(l; G(t0; t)B(t)Qjj(t)B

0(t)G0(t0; t)l)
1=2

(l; X�

+[t]l)
1=2

; t0 � t � �; (67)

X

�0
+ =

� nX
k=1

�kjlkj

�� nX
k=1

(�kjlkj)
�1
X

0
kk

�
;

provided �
�

j (t) > 0 almost everywhere and jlkj > 0; 8k = f1; : : : ; ng.

Otherwise, taking for any given � > 0 the parameters

�
��
j (t) =

�j(l; G(t0; t)B(t)Qjj(t)B
0(t)G0(t0; t)l)

1=2 + �
2jjljj2�1(t)

(l; X�

+[t]l)
1=2 + �jjljj

; (68)

(t) =

mX
j=1

�j(l; G(t0; t)B(t)Qjj(t)B
0(t)G0(t0; t)l)

1=2
;

and

X
�

+[t0] = X
�0�
+ =

nX
k=1

�

(0�)�1

k X
0
kk;

where

�

(0�)
k = p

(0�)
k

� nX
k=1

(p
(0�)�1

k

�
;

p
0�
k = �k(l; X

0
k l)

1=2 + �
2jjljj2

�
n

nX
k=1

�k(l; X
0
k l)

1=2

�
�1

:

should be taken instead of �
�

j (t); �
(0�)
k .

An inequality

�

2(l jE(x0(t); X+(�; p[�])))� �

2(ljX [� ]) � �

2jjljj2

will then be true.
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Remark 7.1. The exact reach set X �[t] is the sum of two sets:

X �[t] = X �

0 [t] + X �

u [t];

where X �

0 [t] = G(t; t0)B(x
0
; X

0) is a (nonrectangular) box and

X �

u [t] =

tZ
t0

G(t; s)B(s)B(u0; P (s))ds;

is a convex compact set. Set X �

0 [t] cannot be exactly approximated by nondegenerate ellipsoids

(see �gures 5,6 in the next Section), while set X �

u [t] may be represented exactly by nondegenerate

ellipsoids under the condition (iii) of Theorem 6.2. Let us reformulate this condition.

Theorem 7.3 In order that for any l 2 IRn
an equality

�(ljX �

u [t]) = �(ljE(0; X�

+[t]))

would be possible for an appropriately selected ellipsoid E(0; X�

+[t]), it is su�cient that the pair

fA(t); ekg would be completely controllable for any k = 1; :::;m.

Then X
�

+[t] will be correctly de�ned when described by equation (66), with parameters �
�

j (t) and

initial condition X
�

+[t0] = X
�0
+ selected due to (67).

This follows from the de�nition of complete controllability , [15]. Under this condition the boundary

of set X�

+[� ] will not have any \platforms" and it can be totally decribed by \tight" ellipsoids, as in

Part I (Sections 1-4, �gures 1-4 ).

Finally, a parametric presentation of set X �[t], similar to (51), (52), can be produced. Then

x
�(t) = x

0(t) +X
�

+[t]l
�(l�; X�

+[t]l
�)1=2; ; (69)

with

X
�(t0) = x

0 +X
0
+l(l; X

0
+l)

1=2
; l

�(t) = G(t; t0))
0
l: (70)

with either �j(t); �
0
k or �

�
j(t); �

(0�)
k selected as indicated in Theorem 11.2. This results in an array

of external ellipsoids of either type E(x0(t); X�

+[� ]) or type E(x
0(t); X��

+ [t]), which lead to equalities

of type (56), or inequalities of type (58) accordingly.

8 Example III

.

In this section we consider external ellipsoids for reach sets and tubes that are initiated from given

starting sets rather than starting points, including box-valued starting sets. In order to compare

reach sets initiated by ellipsoids with those generated by boxes, consider system

_x1 = x2; _x2 = �!2x1 + u2;
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with ju(t)j � � and either (a) x(0) 2 X0 = E(x0; X
0), or (b) x(0) 2 X0 = B(x0; P

0).

Here X0 is the starting set which is either an ellipsoid E(x0; X
0) or a box B(x0; P

0), x0 is a given

vector, matrix X
0 = X

00
> 0, and matrix P

0 is with positive coe�cients.(Further we take X
0 =

I; P
0 = I, to be a unit matrix).

We have:

G(t; � ) = G(t� � ) =

�
cos !(t � � ); !�1 sin!(t � � ))

�! sin(!(t � � )); cos!(t� � ))

�
;

x1(t) = cos !t x01 + !

�1 sin!t x02 +

tZ
0

!

�1 sin!(t� � )d�;

x2(t) = �! sin!t x01 + cos !t x02 +

tZ
0

cos!(t � � )d�;

which yields the support function (b' = f0,1g)

�(ljX [t]) = �(ljG(t; 0)X0 +

tZ
0

jl0G(t; � )bjd�:

The tube X [t]; t � 0; may now be approximated by ellipsoids. Assumption 3.1 of Parts I,II requires

that the \good" curves along which we calculate the reach sets are of the form l(t) = G
0(�t)l.

Then, for case (a), we may use the results of Part I (equations (25), (26) of Part I, where Q(t) is

substituted by Q(t) = �
1=2

b
0
b = �

1=2, see Remark 1.1 of Part I). With !2 = 1; � = 1; x0 = 0; X0 = I;

the calculations are illustrated in Fig.5 ( for the reach sets at instants t = 0:5; t = 1 ) and Fig.6 (

for the reach tube ).

For case (b) the calculations are made due to relations of (64,66), and of Theorem 7.1, with m =

1; n = 2 and are illustrated in Figures 7, 8 for the reach sets and the reach tube accordingly.

The next two �gures 9, 10 are again related to case (b) but with B(u0; P (t)) � f0g, so that the

reach sets X�[t] = X �

0 [t] are box - valued for all t.

Finally, in �gures 11, 12, we return to Example I of Part I and construct the reach sets and reach

tube that are initiated from box X 0 = X [t0] = fx : jxij � 1; i = 1; 2g.

24



−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

0

5
t = 0.5                                                                 

x1

x2

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

0

5
t = 1                                                                 

x1

x2

Fig.5

25



0

0.2

0.4

0.6

0.8

1 −5

0

5−5

0

5

x1

t

x2

Fig.6

26



−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

0

5
t = 0.5                                                                 

x1

x2

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

0

5
t = 1                                                                 

x1

x2

Fig.7

27



0
0.2

0.4
0.6

0.8
1 −5

0

5

−5

−4

−3

−2

−1

0

1

2

3

4

5

x1

t

x2

Fig.8

28



−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

0

5
t = 0.5                                                                 

x1

x2

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

0

5
t = 1                                                                 

x1

x2

Fig.9

29



0
0.2

0.4
0.6

0.8
1 −5

0

5

−5

−4

−3

−2

−1

0

1

2

3

4

5

x1

t

x2

Fig.10

30



−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

0

5
t = 0.5                                                                 

x1

x2

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

0

5
t = 1                                                                 

x1

x2

Fig.11

31



0
0.2

0.4
0.6

0.8
1 −5

0

5

−5

0

5

x1

t

x2

Fig.12

9 Reach tubes for box-valued constraints. Internal approxi-

mations

Following Remark 2.3, we recall that the results of Sections 1-3 are all true for degenerate ellipsoids.

We may therefore directly apply them to box-valued constraints

P(t) = B(u0(t); P (t)); X 0 = B(x0; X0);

using relations (9), (27), in view of the inclusions

B(u0(t); P (t)) =

mX
j=1

E(u0(t); Qii(t)); B(x
0
; X

0) =

nX
k=1

E(x0; Xkk);

where

Qii(t) = qiie
(i)e(i)

0

; qii = �
2
i ; X

0
kk = x

0
kke

(k)e(k)0; x
0
kk = �

2
k;

and e(i); e(k) are unit orts in the respective spaces IRm
; IRn.This leads to the following statement.
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Theorem 9.1 (i) An ellipsoid E(x0(t); X�

�
(t)) that satis�es the relations

X
�

�
(t) = G(t; t0)X�(t)G

0(t; t0);

where

X�(t) =

 
nX

k=1

(X0
kk)

1=2
S
0

0k +

tZ
t0

nX
j=1

G(t0; s)(B(s)Qjj(s)B
0(s))1=2S0j(s)ds

!
� (71)

�

 
nX

k=1

S0k(X
0
kk)

1=2 +

tZ
t0

nX
j=1

Sj(s)(B(s)Qjj (s)B
0(s))1=2G0(t0; s)ds

!
:

and S0k; Sj are any orthogonal matrices of dimensions n�n, (S0kS
0

0k = I; ;SjS
0

j = I), is an internal

ellipsoidal approximate of the reach set X [t] of (61).

(ii) In order that for a given \direction" l the equality

�(l jX [t]) = �(l jE(x0(t); X�

�
(t)))

would be true, it is necessary an su�cient that there would exist a vector d 2 IRn
, such that the

equalities

S0kX
1=2
kk l = �0kd; Sj(B(s)Qjj (s)B

0(s))1=2G0(t0; s)l = �j(s)d; (72)

k = 1; : : : ; n; j = 1; : : : ;m; s 2 [t0; t];

would be true for some scalars �0k; �j(s).

(iii) The function x
0(t) is the same as for external approximations, and is given by (64).

We may now express the relations for X�(t) through di�erential equations similar to those of Section

3.

Denote

Z(t) =

nX
k=1

(X0
kk)

1=2
S
0

0k +

tZ
t0

mX
j=1

G(t0; s)(B(s)QjjB
0(s))1=2S0j(s)ds:

Then

X
�

�
(t) = Y (t)Y 0(t); Y (t) = G(t; t0)Z(t):

Di�erentiating X�

�
(t) and using the previous relations, we come to the proposition.

Theorem 9.2 The matrix X
�

�
(t) of the ellipsoid

E(x0(t); X�

�
(t)) � X [t];

satis�es the equation

_
X

�

�
= A(t)X�

�
+X

�

�
A
0(t) + Y (t)S0(t)(B(t)Qjj(t)B

0(t))1=2 + (B(t)Qjj(t)B
0(t))1=2S(t)Y 0(t) (73)
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with initial condition

X
�

�
(t0) = (

nX
k=1

(X0
kk)

1=2
S
0

0k)
0(

nX
k=1

(X0
kk)

1=2
S
0

0k); (74)

where

_
Y = A(t)Y +

mX
j=1

(B(t)QjjB
0(t))1=2S0j(t);

Y (t0) =

nX
k=1

(X0
kk)

1=2
S
0

0k:

and S0k; Sj are orthogonal matrices of dimensions n� n, (S0kS
0

0k = I; SjS
0

j = I).

In order that the equality �(l jX [t]) = �l jE(x0(t); X�

�
(t))) would be true, it is necessary and su�cient

that relations of type (72) would be satis�ed.

Conclusion

This paper studies the behavior of tight internal ellipsoidal approximations of reach sets and reach

tubes. It shows that equation (34) with appropriately chosen parameter S(t) (an orthogonal matrix-

valued function restricted by an equality) generates a family of internal ellipsoids that touch the reach

tube or its neighborhood from inside along a special family of \good" curves that cover the whole

tube. Such \good" curves are the same as for the external approximations. The suggested techniques

allow on-line calculation of the internal ellipsoids without additional computational burden present

in other approaches. The calculation of similar ellipsoids along any other given smooth curve on

the boundary of the reach tube requires additional burden as compared with the \good" ones. The

internal approximations of this paper rely on relations di�erent from those indicated in [1], [2], [13]

and are relevant for solving various classes of control and design problems requiring guaranteed

performance.

We would �nally like to emphasize that the suggested approach appears to be appropriate for parallel

computations.
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