
Parallelotope Bundles for Polynomial Reachability∗

Tommaso Dreossi
University of Udine

VERIMAG
2 Avenue de Vignate
38610 Gieres, France

tommaso.dreossi@imag.fr

Thao Dang
VERIMAG

2 Avenue de Vignate
38610 Gieres, France
thao.dang@imag.fr

Carla Piazza
University of Udine

via delle Scienze 206
33100 Udine, Italy

carla.piazza@uniud.it

ABSTRACT
In this work we present parallelotope bundles, i.e., sets of par-
allelotopes for a symbolic representation of polytopes. We
define a compact representation of these objects and show
that any polytope can be canonically expressed by a bundle.
We propose efficient algorithms for the manipulation of bun-
dles. Among these, we define techniques for computing tight
over-approximations of polynomial transformations. We ap-
ply our framework, in combination with the Bernstein tech-
nique, to the reachability problem for polynomial dynamical
systems. The accuracy and scalability of our approach are
validated on a number of case studies.

Keywords
Reachability; dynamical system; parallelotope bundle; poly-
tope

1. INTRODUCTION
In this paper we are concerned with polynomial image

computation and its application to reachability analysis of
dynamical systems. The image computation can be stated as
follows: given a function f : D → R and a set X ⊂ D, com-
pute the image of X by f , that is the set Y = {f(x) | x ∈ X}.
The function f , commonly called dynamics, describes the
flow of the system (or its approximation derived from the
system vector field), where the sets D and R are typically Rn
when the state variables of the dynamical system in question
are real-valued. Set-based image computation is a central
operation for many verification and synthesis procedures. A
number of approaches in the verification of continuous and
hybrid systems can be seen as extensions of numerical inte-
gration where the iterative numerical schemes are computed
on sets. In addition, image computation finds applications
in other problems such as control synthesis [22] or program

∗This work has been partially supported by GNCS-INdAM
and the ANR-INS project MALTHY.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HSCC ’16, April 12–14, 2016, Vienna, Austria.
c© 2016 ACM. ISBN 978-1-4503-3955-1/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2883817.2883838

verification through invariant computation via fixed-point
iteration.

For affine functions, image computation can be efficiently
computed using various set representations, such as polyhe-
dra, ellipsoids, support functions, zonotopes (see, e.g., [10,
4, 29, 18, 23, 27, 24, 1, 15]). For nonlinear functions such as
polynomials, the problem is more difficult since many prop-
erties of linear functions that facilitate image computation
(such as convexity preservation) are no longer valid. One
approach to handle nonlinearity is to use piecewise linear
approximations [20, 5, 6, 2]. While this approach can be ap-
plied to a quite general class of flows and vector fields, other
approaches focus on some special classes of functions and
exploit their properties. Among these classes, polynomials
have drawn a particular interest thanks to their applications
in the modeling of biological processes, economic, and engi-
neering systems.

In [13] we proposed a technique for polynomial systems us-
ing the Bernstein expansion, which allows one to efficiently
approximate the image of a box domain by a polynomial.
However, the box representation is restrictive in geometri-
cal expressiveness and thus limited in approximation power.
For better approximation accuracy, more general sets should
be used. In [12] we introduced the idea of using parallelo-
topes as a trade-off between computational complexity and
approximation accuracy. Indeed, using parallelotopes, the
transformation to boxes can be done efficiently, and in ad-
dition, the choice of parallelotopic form can be used to fine
tune the approximation. In this work, we generalize this idea
to polytopes defining parallelotope bundles that allow one to
represent polytopes as finite sets of parallelotopes. Intu-
itively, the strength of parallelotope bundles is that the im-
ages of the represented polytopes can be over-approximated
by the intersection of the images of the parallelotopes that
constitute the bundles. Hence, exploiting the transforma-
tions of single parallelotopes, thanks to parallelotope bun-
dles we can tightly over-approximate the images of polytopes
by polynomials.

Related to our work, in [8, 9], for a continuous system
described by nonlinear ODEs, the flow is first approximated
from an interval domain in a time interval by a Taylor poly-
nomial around some point inside the domain. Then, this
polynomial is bloated by an interval to account for the re-
mainder terms. Taylor models support basic arithmetic op-
erations using interval arithmetics techniques and can thus
handle polynomials. Prior to this work, in [21] interval-based
integration of ODEs was used for computing the reachable
set of nonlinear hybrid systems. In [26] the reachable set

is also represented by box cells in a partition of the state
space and the propagation of the system from one box to
a neighboring one is conservatively determined by the flow
constraints on their boundary. In terms of reachable set
representation, all the above-mentioned methods use boxes.
Parallelotopes have been used in [3] as domains for abstract
interpretation and algorithms for linear operations, together
with specific operations for program verification (assignment,
union). Nevertheless, the abstract domain is defined by
a single parallelotope and nonlinear operators are not yet
considered. The use of zonotopes and template polyhedra
adopted by [28, 27, 17, 1, 19] as set representations are also
close to our work, but the box-domain requirement of the
Bernstein technique makes this sets less convenient to han-
dle, since their transformation to boxes are expensive.

The paper is organized as follows: in Section 2 we intro-
duce basic definitions; Section 3 defines parallelotope bun-
dles and operations on them; Section 4 is dedicated to the
representation and the algorithmic manipulation of paral-
lelotope bundles; in Section 5 a reachability algorithm based
parallelotope bundles for polynomial dynamical systems is
given; the proposed techniques are experimentally validated
in Section 6; Section 7 ends the paper with some remarks.
The proofs of this work are available at http://www-verimag.
imag.fr/˜dreossi/docs/papers/bundles 2015.pdf

2. PRELIMINARIES
A half-space h of Rn is a subset of Rn characterized by a

linear inequality, i.e., h = {x ∈ Rn | dx ≤ c}, where d ∈ Rn
is a non-null vector also called normal vector and c ∈ R is
an offset.

Definition 1 (Polytope). A polytope Q is a bounded
subset of Rn such that there is a finite set H = {h1, . . . , hk}
of half-spaces whose intersection is Q, i.e., Q = ∩ki=1hi.

The linear constraints that generate the half-spaces can be
organized in a matrix D ∈ Rk×n, called direction matrix (or
template) and a vector c ∈ Rk, called offset vector. The i-th
row Di of D together with the i-th component ci of c define
the half-space hi ∈ H, being its normal vector and offset,
respectively. With a slight abuse of notation, we denote with
〈D, c〉 the polytope generated by the direction matrix D the
offset vector c. Notice that polytopes are bounded subsets
of Rn, hence not all the pairs 〈D, c〉 define a polytope.

A polytope Q can be represented as the intersection of
different sets of half-spaces. For instance, adding to Q new
half-spaces that do not affect the intersection, we get a new
representation of Q. Moreover, even without adding new
half-spaces, we can get a new representation by multiplying
the i-th row of D and the i-th component of c by a positive
constant. However, if needed, one can refer to the canonical
representation in which all the half-spaces are necessary and
the direction vectors are versors, i.e., vectors of norm one.

Parallelotopes are centrally symmetric polytopes of Rn
having 2n pairwise parallel constraints.

Definition 2 (Parallelotope). Let 〈Λ, c〉 be a poly-
tope in Rn with Λ ∈ R2n×n direction matrix such that Λi =
−Λi+n, for i ∈ {1, . . . , n} and c ∈ R2n offset vector. The
parallelotope P generated by Λ and c is P = 〈Λ, c〉.

h1

h2

h3

Q

P1

P2

Figure 1: A polytope Q and a possible decomposing bundle
{P1, P2}, i.e., {P1, P2}∩ = Q.

3. PARALLELOTOPE BUNDLES
We now define parallelotope bundles, that are sets of par-

allelotopes whose intersections symbolically represent poly-
topes. Our definition and notation are inspired by [1].

Definition 3 (Parallelotope Bundle). A parallelo-
tope bundle is a finite set of parallelotopes {P1, . . . , Pb} whose

intersection, denoted by {P1, . . . , Pb}∩ =
⋂b
i=1 Pi, is the

polytope generated by 〈D, c〉, where D and c are the union
of the templates and offsets of Pi, for i ∈ {1, . . . , b}.

Two parallelotope bundles {P1, . . . , Pb} and {P ′1, . . . , P ′b′}
are equivalent if they denote the same polytope. A bundle
{P1, . . . , Pb} allows us to symbolically represent a polytope
{P1, . . . , Pb}∩ without requiring the explicit computation of
the intersection of the parallelotopes Pi. Since we are inter-
ested in bundles as symbolic representations of polytopes, we
can always replace a bundle with an equivalent one, when-
ever this is convenient.

Lemma 1 (Polytope Decomposition). Let Q be a po-
lytope. There exists a finite set of parallelotopes {P1, . . . , Pb}
such that Q = {P1, . . . , Pb}∩.

Lemma 2 (Decomposition Cardinality). dm/ne par-
allelotopes are sufficient to decompose a polytope Q defined
by m constraints into a bundle.

Lemma 1 states that any polytope can be represented by
a parallelotope bundle while Lemma 2 fixes the maximum
number of parallelotopes sufficient to decompose a polytope.
Figure 1 shows a polytope Q together with a possible decom-
position, i.e., a bundle {P1, P2} such that {P1, P2}∩ = Q.
Here m = 3 and n = 2, so d3/2e = 2 parallelotopes are suffi-
cient to decompose Q (in our case P1 and P2). In Section 5
we will describe an algorithm for decomposing a polytope
into a bundle in view of accurate image approximation.

Definition 4 (Set Enclosure). Let S ⊂ Rn be a com-
pact set and Q = 〈D, c〉 ⊂ Rn be a polytope. The en-
closure of S with respect to Q is defined as the polytope
�(S,Q) = 〈D, c′〉, where c′i = maxx∈S Dix, for i = 1, . . . , k.

The enclosure of S with respect to Q can be seen as tight
over-approximation of S obtained using the template of Q.
The following properties of set enclosure can be easily proved.

Lemma 3. Let S, S′ ⊂ Rn be compact sets with S ⊆
S′and Q = 〈D, c〉, Q′ = 〈D′, c′〉 be two polytopes such that
D′ ⊆ D. It holds that:

(1) S ⊆ �(S,Q);

(2) �(S,Q) = �(S,�(S,Q)) = �(�(S,Q), Q);

h1

h2

h3

Q
P ′1

P ′2

Figure 2: A polytope Q and a its set bundle enclosure with
respect to {P1, P2} of Figure 1: �(Q, {P1, P2}) = {P ′1, P ′2}.

(3) �(S,Q) ⊆ �(S′, Q);

(4) �(S,Q) ⊆ �(S,Q′).

The notion of set enclosure can be extended to bundles.

Definition 5 (Set Bundle Enclosure). Let S ⊂ Rn
be a compact set and {P1, . . . , Pb} be a bundle. The enclo-
sure of S with respect to the bundle {P1, . . . , Pb} is defined
as �(S, {P1, . . . , Pb}) = {P ′1, . . . , P ′b}, where P ′i = �(S, Pi),
for i = 1, . . . , b.

The set bundle enclosure surrounds S with the parallelo-
topes Pi, producing a bundle whose parallelotopes P ′i wrap
S. The two operators are related by the following equality.

Lemma 4. �(S, {P1, . . . , Pb})∩ = �(S, {P1, . . . , Pb}∩).

The set bundle enclosure of S with respect to the bundle
{P1, . . . , Pb} coincides with the enclosure of S with respect
to the polytope {P1, . . . , Pb}∩. As a consequence, we get
that �(·, ·) and �(·, ·) are equivalent, with the difference
that �(·, ·) returns a polytope, while �(·, ·) returns a bundle.
Figure 2 shows the set bundle enclosure of the polytope Q
with respect to the bundle {P1, P2} of Figure 1. The result
of �(S, {P1, P2}) is the new bundle {P ′1, P ′2}.

We say that {P ′1, . . . , P ′b′} is a sub-bundle of {P1, . . . , Pb}
if {P ′1, . . . , P ′b′} ⊆ {P1, . . . , Pb} and that two bundles are
strongly similar if the set of normal vectors defining a paral-
lelotope in one bundle is equal to the set of normal vectors
defining a parallelotope in the other bundle. The follow-
ing properties of the bundle enclosure operator immediately
follow by definitions, Lemma 3, and Lemma 4.

Lemma 5. Let S, S′ ⊂ Rn be compact sets with S ⊆ S′,
{P1, . . . , Pb} be a bundle, {P ′1, . . . , P ′b′} be one of its sub-
bundles, and {P ′′1 , . . . , P ′′b } be a bundle strongly similar to
{P1, . . . , Pb}. It holds that:

(1) S ⊆ �(S, {P1, . . . , Pb})∩;

(2) �(S, {P1, . . . , Pb}) = �(S,�(S, {P1, . . . , Pb})) =
� (�(S, {P1, . . . , Pb}), {P1, . . . , Pb});

(3) �(S, {P1, . . . , Pb})∩ ⊆ �(S′, {P1, . . . , Pb})∩;

(4) �(S, {P ′1, . . . , P ′b′}) ⊆ �(S, {P1, . . . , Pb}) and
�(S, {P1, . . . , Pb})∩ ⊆ �(S, {P ′1, . . . , P ′b′})∩;

(5) �(S, {P1, . . . , Pb}) is strongly similar to {P1, . . . , Pb};

(6) �(S, {P1, . . . , Pb}) = �(S, {P ′′1 , . . . , P ′′b }).

A bundle representing a polytope may not be “minimal”
in the sense that one or more paralleloptopes can be shrunk
while the resulting bundle still represents the same poly-
tope. The shrinking process removes parts of parallelotopes

that are not in the polytope and it is useful for many oper-
ations, in particular image over-approximation. As we will
see later, the shrinking reduces the error when the image
over-approximation is performed on shrunk parallelotopes.
A bundle that remains unchanged after a shirking is said to
be in canonical form.

Definition 6 (Bundle Canonical Form). A bundle
{P1, . . . , Pb} is in canonical form if and only if:

�({P1, . . . , Pb}∩, {P1, . . . , Pb}) = {P1, . . . , Pb}.

Intuitively, a bundle {P1, . . . , Pb} is in canonical form if the
enclosure of its symbolic polytope P∩ = {P1, . . . , Pb}∩ with
respect to {P1, . . . , Pb} does not affect the parallelotopes
Pi, for i ∈ {1, . . . , b}. The canonical form of a bundle
{P1, . . . , Pb} can be obtained by enclosing its polytope P∩

with respect to its parallelotopes Pi. The bundle {P ′1, P ′2}
of Figure 2 is in canonical form, since it is the result of
the bundle enclosure �(Q, {P1, P2}) = {P ′1, P ′2} where Q =
{P1, P2}∩. In virtue of Lemma 5 item (2), the result of a
bundle enclosure is always in canonical form. In other terms,
the operator �(·, ·) can be exploited for canonizing bundles,
as stated by the following result.

Lemma 6 (Canonization). Let {P1, . . . , Pb} be a bun-
dle. The bundle �({P1, . . . , Pb}∩, {P1, . . . , Pb}) is in canon-
ical form and it is equivalent to {P1, . . . , Pb}.

A bundle in canonical form is a “minimal” representation
of the polytope with respect to a given set of parallelotope
directions, since all the offsets are shifted towards the con-
straints of the polytope. The advantage of dealing with bun-
dles in canonical form will become clearer on images approx-
imation.

In the following we show the advantage of bundles in im-
age approximation. We start by proving some inclusions
that hold on the images of bundles by a continuous function.
Note that these properties hold for all continuous functions,
and in the case of polynomials, they are particularly use-
ful for our image approximation problem, because we can
indeed effectively enclose the image of a parallelotope.

Lemma 7 (Bundle Image). Let {P1, . . . , Pb} be a bun-
dle with P∩ = {P1, . . . , Pb}∩ and f : Rn → Rn be a contin-
uous function. The following inclusions hold:

f(P∩) ⊆ �(f(P∩), {P1, . . . , Pb})∩ ⊆ (7.1)

⊆
⋂b
i=1 �(f(Pi), {P1, . . . , Pb})∩ ⊆ (7.2)

⊆
⋂b
i=1 �(f(Pi), {Pi})∩ (7.3)

Figure 3 shows the intersection of the enclosures of f(P1)
and f(P2) with respect to {P1, P2}; Figure 4 shows the en-
closure of f(P1) with respect to P1 intersected with the en-
closure of f(P2) with respect to P2. Note how the over-
approximation of the first method is tighter than the second
one.

Intuitively Lemma 7 suggests us two possible ways of ap-
proximating the image of a polytope P∩ represented by a
bundle {P1, . . . , Pb}. In case (7.2), we can over-approximate
f(P∩) with the bundle enclosures of the transformed paral-
lelotopes f(Pi) with respect to {P1, . . . , Pb}. In case (7.3),
we can consider the set enclosures of each parallelotope im-
age f(Pi) with respect to its original directions. In both
cases we only need to be able to compute the images of the
parallelotopes and their enclosures.

f(P1)

f(P2)
f(Q)

Figure 3: �(f(P1), {P1, P2})∩ ∩�(f(P2), {P1, P2})∩.

f(P1)

f(P2)
f(Q)

Figure 4: �(f(P1), P1) ∩ �(f(P2), P2).

Notice however that the bundle {P1, . . . , Pb} may not be
in canonical form. The following result shows that if we
approximate the image of {P1, . . . , Pb}∩ exploiting Lemma 7
on the canonical bundle �({P1, . . . , Pb}∩, {P1, . . . , Pb}) we
get tighter approximations.

Theorem 1 (Canonical Bundle Image). Let us con-
sider a bundle {P1, . . . , Pb}, with P∩ = {P1, . . . , Pb}∩,
and a function f : Rn → Rn. Let also {P ′1, . . . , P ′b} =
�({P1, . . . , Pb}∩, {P1, . . . , Pb}). The following relations hold
among the over-approximations of f(P∩):

�(f(P∩), {P ′1, . . . , P ′b})
∩ = �(f(P∩), {P1, . . . , Pb})∩ ⊆⋂b

i=1 �(f(P ′i), {P ′1, . . . , P ′b})∩ ⊆
⋂b
i=1 �(f(Pi), {P1, . . . , Pb})∩⊆ ⊆⋂b

i=1 �(f(P ′i), {P ′i})∩ ⊆
⋂b
i=1 �(f(Pi), {Pi})∩

As a consequence, having to compute the image of a generic
compact set S, one can first over approximate S through
the bundle enclosure operator, which returns a bundle in
canonical form, and then exploit the above results to over-
approximate the image of S.

4. BUNDLE DATA STRUCTURE
In this section we define a data structure and some meth-

ods for the compact representation and transformation of
bundles in canonical form.

A parallelotope bundle in canonical form can be com-
pactly represented with the tuple 〈L,d,d, T 〉 where:

• L ∈ Rk×n is the directions matrix that contains the
directions used to build the parallelotopes. The i-th
row Li of L represents a direction;

• d ∈ Rk is the upper offsets vector. The i-th element
of d, associated with the i-th direction Li, constitutes
the half-space Lix ≤ di;

• d ∈ Rk is the lower offsets vector. The i-th element
of d, associated with the i-th direction Li, constitutes
the half-space −Lix ≤ di;

• T ∈ {1, . . . , k}b×n is the templates matrix that rep-
resents the set of the parallelotope templates. Each
element in T is a reference to a direction in L and
offsets in d and d. A row in T constitutes a set of
half-spaces that generates a parallelotopes.

Consider for instance the bundle {P ′1, P ′2} in canonical
form of Figure 2 where P ′1 = 〈Λ′1, c′1〉 and P ′2 = 〈Λ′2, c′2〉
with:

Λ′1 =

 1.6 1
0 1
−1.6 −1

0 −1

 c′1 =

10
3.1
−1
−1

Λ′2 =

 1.6 1
−0.5 1
−1.6 −1
0.5 −1

 c′2 =

10
1
−1
1.7

This bundle can be represented by the tuple 〈L,d,d, T 〉

where:

L =

 1.6 1
0 1
−0.5 1

d =

10
3.1
1

d =

−1
−1
1.7

T =

(
1 2
1 3

)
.

With this representation we avoid the storage of redun-
dant directions shared by different parallelotopes. In doing
so, a single operation on an entry in the tuple, indirectly
affects several parallelotopes in the bundle. Moreover, for
each parallelotope we store only n directions against 2n con-
straints, since we know that parallel constraints can be ob-
tained by reversing the signs of the normal vectors. Note
that each direction Li is associated with a unique upper and
lower offset di and di. This means that if two parallelotopes
share a direction, the constraints defined by this direction
coincide in the two parallelotopes. Hence, this data struc-
ture does not allow us to represent all the possible bundles
(for instance the one shown in Figure 1), but it is expressive
enough to capture all the canonical bundles (like the one of
Figure 2).

We now show how the operations presented in Section 3
can be defined on our data structure 〈L,d,d, T 〉. We begin
with the decomposition of a polytope (see Definition 3).

Method 1 (Polytope Decomposition). Let Q ⊂ Rn
be a polytope defined by m constraints. Let L ∈ Rk×n be a
matrix containing all the versors of Q without repetitions,
i.e., the elements of L are pairwise linearly independent. To
generate the i-th decomposing parallelotope, it is sufficient
to pick n directions Lj1 , . . . , Ljn from L and store their in-
dices in the template matrix Ti = (j1, . . . , jn). By Lemmas 1
and 2, we have to generate at most dm/ne parallelotopes
such that the union of the picked directions is a cover of the
constraints of Q. Finally, the offset vectors d,d ∈ Rk can
be obtained by enclosing Q with respect to the constructed
parallelotopes as described in Method 2.

We now show how to compute the set bundle enclosure.

Method 2 (Set Bundle Enclosure �(·, ·)). The en-
closure of a bounded set S ⊂ Rn with respect to a canon-
ical bundle {P1, . . . , Pb} stored as 〈L,d,d, T 〉 can be ob-
tained by updating the upper and lower offset vector as di =
maxx∈S Lix and di = maxx∈S −Lix, for i = 1, . . . , k.

The described methods work only on canonical bundles and
return a compact representation of a canonical bundle. The
enclosure of a polytope with respect to a bundle requires
the resolution of 2k linear programs. Thus, the canoniza-
tion of a bundle can be done by solving a series of linear
programs where only the offsets of the constraints that do
not participate to the intersection are modified.

The transformation of a bundle through a continuous func-
tion can be rather difficult, depending on the transforming
function. If the function is linear, it is possible to exactly
compute the image of each parallelotope and then obtain

the exact bundle transformation. Things are more complex
when the function is nonlinear and the geometric proper-
ties of the parallelotopes are not preserved. We will now
describe two methods based on Theorem 1, requiring only
computations on single parallelotopes (besides being able to
implement Method 2). As stated by Lemma 7 item (3), an
over-approximation of a bundle transformation f(P∩), with
P∩ = {P1, . . . , Pb}, can be obtained by enclosing each im-
age f(Pi) with P ′i = �(f(Pi), {Pi})∩ and then considering

the intersection
⋂b
i=1 P

′
i (see (7.3)). We call this approxi-

mation one-for-one (OFO), since each parallelotope in the
bundle is independently approximated.

Method 3 (One-for-One Image (OFO)). The one-
for-one approximation of the bundle 〈L,d,d, T 〉 can be ob-
tained by retrieving each parallelotope Pi, computing the en-
closures P ′i = �(f(Pi), Pi), and then computing the canon-
ization of {P ′1, . . . , P ′b}∩ = P ′∩, that is �(P ′∩, {P1, . . . , Pb}).

The polytope provided by the OFO method corresponds
to the polytope

⋂b
i=1 �(f(Pi), {Pi})∩ of Lemma 7 item (3).

In order to obtain a finer over-approximation, it is possible
to change the template in the approximation process, i.e.,
we can fix a new template to enclose f(Pi). As suggested by
Lemma 7 item (2), we can exploit all the directions of the
bundle, i.e., instead of looking for a new template for each
parallelotope, we can bound each set f(Pi) with all the direc-
tions of the transformed bundle. We call this approximation
all-for-one (AFO) since all the directions of the bundle are
used to approximate the image of a single parallelotope.

Method 4 (All-for-One Image (AFO)). The all-for-
one approximation of the bundle 〈L,d,d, T 〉 can be obtained
by retrieving each parallelotope Pi, computing the set bun-
dle enclosures {P ′i 1, . . . , P

′
i b} = �(f(Pi), {P1, . . . , Pb}), for

i = 1, . . . , b, and enclosing the polytope
⋂b
i=1{P

′
i 1, . . . , P

′
i b}∩

with respect to the transformed bundle, i.e., computing the
bundle enclosure �(

⋂b
i=1{P

′
i 1, . . . , P

′
i b}∩, {P1, . . . , Pb}).

The AFO transformation produces a bundle whose poly-
tope corresponds to

⋂b
i=1 �(f(Pi), {P1, . . . , Pb})∩ of Lemma

7 item (2). By Lemma 7, the AFO approximation is finer
than the of OFO one. Clearly the precision has a cost: the
OFO method requires b(2n) + k optimizations against the
b(2k) + k optimizations of the AFO approach (recall that
k ≥ n).

Both the approximation methods are based on a series of
enclosures. The offsets of the constraints necessary to ob-
tain the enclosures can be attained by solving optimization
problems of the form dj = maxx∈f(Pi) Ljx. If the transfor-
mation function f is nonlinear, these optimization problems
might be computationally expensive. In the next section
we expose a method, based on the Bernstein coefficients, to
efficiently deal with optimizations of polynomial functions.

5. POLYNOMIAL REACHABILITY
In this section we recall a technique to over-approximate

the image of a parallelotope in the case of polynomial func-
tions. The technique is based on Bernstein coefficients and
has been described in our previous works [13, 14, 12]. To-
gether with the methods defined in the previous section,
this gives us an algorithm for the reachability computation
of discrete-time polynomial dynamical systems.

A discrete-time polynomial dynamical system can be de-
scribed by difference equations as follows:

xk+1 = f(xk)

x0 ∈ X0

(1)

where x ∈ Rn is the vector of state variables and f : Rn →
Rn is a vector of n multi-variate polynomials of the form
fi : Rn → R, for each i ∈ {1, . . . , n}. The set X0 ⊆ Rn is
called the initial set.

Given an initial set X0, we are interested in computing the
bounded time reachable set of the dynamical system, i.e, the
set of states visited by the dynamical system up to a fixed
time horizon K ∈ N. The reachable set can be obtained
as the solution of the recursion Xi+1 = {f(x) | x ∈ Xi},
for i = 0, . . . ,K. In this approach, the computation of the
reachable set can be reduced to a series of images of sets by
the polynomial f . This means that if we represent with a
bundle the set Xi, we can reduce the single step evolution
Xi+1 = {f(x) | x ∈ Xi} to a bundle transformation.

Algorithm 1 shows our reachability algorithm based on
parallelotope bundles. For brevity, the bundle {P1, . . . , Pb}
computed at the i-th iteration is abbreviated by Bi.

Algorithm 1 Bundle Reachability

1: function Reach(X0) . X0 polytope
2: B0 ←Decompose(X0) . Init. bundle
3: for i = 1, . . . ,K do
4: Bi ←Transform(f ,Bi−1)
5: Bi ←Decompose(Bi) . Optional
6: end for
7: end function

The algorithm receives in input a polytope X0 that is
decomposed into the bundle B0 (Line 2). Then, it enters
in a loop where at each iteration it over-approximates the
set of states reachable at time i through the transforma-
tion of the bundle Bi−1 with respect to the dynamics f
(Line 4). The transformation performed by the function
Transform can be either the OFO (see Method 3) or the
AFO (see Method 4). In both cases, the transformation pro-
duces a bundle Bi in canonical form that over-approximates
the states reachable by the dynamical system from Bi−1.
Finally, the symbolic polytope of the computed bundle Bi
can be decomposed (Line 5), obtaining a new bundle whose
parallelotopes combine the directions differently from Bi−1.
The decomposition is optional, but it might improve the
precision in the over-approximation of the future transfor-
mations, since the over-approximating parallelotopes might
be smaller than the ones produced by the transformation. In
the following we will discuss in detail the functions Trans-
form and Decompose. We begin with the polynomial
transformation since, as we will discover later, the decompo-
sition is strictly related to the way we transform the bundles.

Transformation. The operation at the basis of the trans-
formation of a parallelotope P is the nonlinear optimization
problem of the form c′i = maxx∈f(P) Λix, or equivalently,
c′i = maxx∈P Λif(x), where Λi ∈ Rn is a generic direc-
tion. Solving this problem, or finding a tight upper-bound
of c′i, means being able to find the offset of a constraint
with normal vector Λi tangent or close to the set f(P). In
our previous works [14, 12], inspired by [13], we developed

a method to bound polynomials over boxes and parallelo-
topes. The method, based on a particular property of the
Bernstein coefficients, is summarized in the following.

A polynomial π : Rn → R can be expressed in the common
power basis as π(x) =

∑
i∈I aix

i, where x = (x1, . . . ,xn) ∈
Rn is a vector or variables, i = (i1, . . . , in) ∈ Nn is a multi-
index, I is the multi-index set of π, and ai ∈ R are the
polynomial coefficients. In the following, we write d/i for
(d1/i1, . . . ,dn/in) and

(
d
i

)
for the product

(
d1
i1

)
. . .
(
dn
in

)
. The

same polynomial π can be represented using the Bernstein
basis as π(x) =

∑
i∈I biB(d,i)(x), where d ∈ Nn is the degree

of π, i.e., the multi-index that dominates the multi-indices
in I, bi =

∑
j≤i

(
i
j

)
/
(
d
j

)
aj are the Bernstein coefficients, and

B(d,i)(x) = β(d1,i1)(x1) . . . β(dn,in)(xn) is the i-th Bernstein

basis where β(dj ,ij)(x) =
(dj

ij

)
xij (1 − x)dj−ij . The points

(i/d,bi) ∈ Rn+1 are called Bernstein control points.
Bernstein coefficients own the useful range enclosing prop-

erty stating that for all the x ∈ [0, 1]n, mini∈I bi ≤ π(x) ≤
maxi∈I bi. This means that the image of the unit box
π([0, 1]n) is bounded by the minimum and maximum Bern-
stein coefficients. Hence, if we want to bound a polyno-
mial over the unit box, instead of solving a nonlinear opti-
mization problem, we can compute the Bernstein coefficients
bi and take their maximum and minimum. The following
lemma [13] bounds the distance between a polynomial and
its Bernstein control points, or in other words, the error be-
tween the maximum and minimum of a polynomial and the
bounds provided by its Bernstein coefficients. This lemma
provides us a criterion for decomposing a bundle and for
dividing sets in order to achieve better precision.

Lemma 8. [13] Let Cπ : Rn → R be the piecewise linear
function defined by the Bernstein control points of the poly-
nomial π : Rn → R, with respect to the box [0, 1]n. For all
x ∈ [0, 1]n

| π(x)− Cπ(x) |≤ max
x∈[0,1]n;i,j∈{1,...,n}

| ∂i∂jπ(x) | (2)

where | · | is the infinity norm on Rn.

Several convergent subdivision procedures for reducing the
gap between bounds and optimums have been proposed [16,
25]. Note that the range enclosing property works only on
the unit-box domain. If we want to apply this property to
a generic box or a parallelotope X ⊂ Rn, we can define a
linear transformation v : [0, 1]n → X that maps the unit box
to X, and exploit the Bernstein range enclosing property on
the function π(v(x)) : [0, 1]n → R. With this technique we
can define a procedure Bound(π,X) that receives in input
a polynomial π and a box or parallelotope X, computes the
linear transformation v : [0, 1]n → X, composes π with v,
computes the Bernstein coefficients of π(v(x)), and returns
the maximum Bernstein coefficients b∗ ∈ R. By the range
enclosing property, b∗ is such that b∗ ≥ maxx∈X π(x).

The function Bound can be used to bound our optimiza-
tion problem and compute the transformation of a bundle:
given a parallelotope P , the determination of c′i for a direc-
tion Λi such that Λix ≤ c′i ⊇ f(P), can be obtained with
the procedure c′i = Bound(Λif(x), P).

We now take advantage of the function Bound to define
our bundle transformation methods. The OFO transforma-
tion of a bundle 〈L,d,d, T 〉, as exposed in Method 3, can be
obtained by retrieving each parallelotope Pi = 〈Λ, c〉, for i =
1, . . . , b, computing the new offsets c′j = Bound(Λjf(x), Pi),

for j = 1, . . . , 2n, and defining the over-approximating par-
allelotope P ′i = 〈Λ, c′〉 ⊇ f(Pi). Finally, the canoniza-
tion of the transformed bundle {P ′1, . . . , P ′b} can be ob-
tained by solving a family of linear programs of the form
maxx∈P ′∩ Λix, where Λi belongs to the template matrices
of P ′j and P ′∩ = {P ′1, . . . , P ′b}∩ is the polytope of the com-
puted bundle.

The AFO transformation of a bundle 〈L,d,d, T 〉, as de-
fined in Method 4, can be done as follows. For each parallelo-
tope of the bundle Pi, for i = 1, . . . , b, we have to compute
the enclosure {P ′i 1, . . . , P

′
i b} = �(f(Pi), {P1, . . . , Pb}). An

over-approximation of P ′im , with m ∈ 1, . . . , b, is the par-
allelotope 〈Λ, c′〉 where Λ is the template of Pim and c′j =
Bound(Λjf(x), Pim), for all j = 1, . . . , 2n. Finally, the can-

onization �(
⋂b
i=1{P

′
i 1, . . . , P

′
i b}∩, {P1, . . . , Pb}) can be com-

puted by solving a group of linear programs of the form
maxx∈P ′∩ Λjx, where Λj belongs to the template matrices

of P ′im and P ′∩ =
⋂b
i=1{P

′
i 1, . . . , P

′
i b}∩ is the intersection of

the polytopes represented by the computed bundles.

Decomposition. Since in our reachability algorithm we may
be interested in decomposing a polytope in a bundle (see Al-
gorithm 1), we define a function Decompose that receives in
input a bundle in canonical form 〈L,d,d, T 〉 (whose poly-
tope P∩ has to be decomposed) and reorganizes the tem-
plates matrix T creating a new collection of parallelotopes
around the polytope P∩. The goal of the decomposition is to
create a set of small parallelotopes whose intersection is P∩.
There are two reasons why we want small parallelotopes:

1. smaller parallelotopes Pi lead to a smaller bundle im-
age {f(P1), . . . , f(Pd)} and then to a more accurate
over-approximation f(P∩) (see, e.g., Theorem 1);

2. the shorter the largest side length of Pi, the more accu-
rate the over-approximation introduced by the Bern-
stein coefficients (see Lemma 8).

Hence, the aspects to take into account in the construction
of the parallelotopes are the volume and the maximum side
length. Moreover, we do not have to forget that the set
of the parallelotope directions must cover the directions of
polytope to be decomposed (see Definition 3). Finding the
best decomposition in terms of volume and maximum length
minimization is computationally expensive and might not be
possible (recall that the set cover problem is NP-hard).

In order to efficiently find a good decomposition, we pro-
pose a heuristic technique that constructs the parallelotopes
while trying to minimize the volumes and maximum side
lengths. The proposed heuristic starts from a decomposi-
tion, applies a series of random changes to the templates
matrix, and keeps only the best one accordingly to an eval-
uation function that we will soon define. The procedure is
repeated until a fixed number of iterations is reached.

Given a bundle P∩ = {P1, . . . , Pb}, the evaluation func-
tion should take into account the volumes and side lengths
of the parallelotopes Pi, for i ∈ {1, . . . , b}. The exact com-
putation of the volume of a parallelotope is rather expen-
sive, since it is equal to the determinant of a n× n matrix.
To lighten the computation, we approximate the volume of
P = 〈Λ, c〉 with the product of the distances of its con-
straints:

ṽ(P) =
n∏
i=1

δ(Λix ≤ di,Λi+nx ≤ di+n) (3)

where δ(Λix ≤ di,Λi+nx ≤ di+n) = |di − di+n|/‖Λi‖ and
‖·‖ is the Euclidean norm.

The computation of the side lengths of a parallelotope
passes inevitably through the determination of its vertices,
an operation that can be computationally expensive. In-
stead of calculating the exact lengths, we opt for a faster
heuristic that guesses the lengths of a parallelotope from
the angles of the directions of its constraints. Intuitively,
in the two-dimensional case, having fixed two parallel lines,
the lengths of the edges not lying on the two fixed lines are
minimal when the added directions and the fixed ones are
orthogonal. Thus, we define the notion of orthogonal prox-

imity θ(Λi,Λj) = Λ̂i,Λj (mod π/2), where Λ̂i,Λj is the an-

gle between Λi and Λj , i.e., Λ̂i,Λj = arccos
ΛiΛj

‖Λi‖‖Λj‖
. The

orthogonal proximity of a parallelotope P = 〈Λ, c〉 is defined
as:

Θ(P) = max
i,j∈{1,...,2n}

θ(Λi,Λj). (4)

Exploiting the notions of approximated volume ṽ and or-
thogonal proximity Θ, we define the evaluation function w
for a bundle as:

w({P1, . . . , Pb}) = max
i∈{1,...,b}

αṽ(Pi) + (1− α)Θ(Pi) (5)

where α ∈ [0, 1] is a tunable parameter.

6. EXPERIMENTAL RESULTS
We implemented a C++ tool called Sapo that manipu-

lates parallelotope bundles and computes the reachable set
of polynomial dynamical systems. The tool is structured in
three main blocks: the bundle handler that stores and works
with bundles; the base converter that computes the Bern-
stein coefficients of polynomials (the coefficients are symbol-
ically calculated using our improved matrix method [14]);
the reachability layer, where a dynamical system is speci-
fied and its reachable set is computed. Our tool relies on
the libraries GiNaC1 for the symbolic manipulation of for-
mulas and GLPK (GNU Linear Programming Kit)2 for the
resolution of linear programs.

In the following we present four case studies. All the
experiments were carried out on a laptop computer Intel
Core(TM) Duo (2.40 GHz, 4GB RAM) running Ubuntu
12.04. The tool and the full descriptions of the case study
configurations can be found at the link https://github.com/
tommasodreossi/sapo.

Test Model. Our first experiment is based on the following
illustrative 2-dimensional dynamical system:

xk+1 = xk + (0.5x2
k − 0.5y2

k)∆

yk+1 = yk + (2xkyk)∆
(6)

The directions constituting the bundles are L0 = (1, 0), L1 =
(0, 1), L2 = (−1, 1), L3 = (1, 1), the initial set is a box with
x ∈ [0.05, 0.1] and y ∈ [0.99, 1.00], and ∆ = 0.01. Figure 5
shows the reachable sets computed with the different tech-
niques plotted over time up to 25 steps. Figure 5a shows the
sets computed using the OFO and AFO transformations (in
white and gray, respectively), without the bundle decompo-
sition. In both cases the bundle is composed by two paral-

1http://www.ginac.de/
2http://www.gnu.org/software/glpk/glpk.html

lelotopes obtained by coupling L0 with L1 and L2 with L3,
respectively. The picture shows that the AFO transforma-
tion is finer than the OFO one. The OFO computation took
0.14s, the AFO 0.21s. Figure 5b compares the sets computed
using the AFO transformation with (in black) and without
(in gray) the bundle decomposition. In the decomposition
function, the parameter α is equal to 0.5 and the number of
decompositions randomly generated at each step is 500. The
computation without decomposition took 0.22s against 1.94s
of the one with decomposition. Note how the black flow is
always included in the gray one, meaning that decompo-
sition, applied with the AFO transformation, is finer than
non-decomposed AFO and OFO transformations. Finally,
Figure 5c depicts the AFO transformation with decomposi-
tion for α = 0 (in gray) and α = 1 (in white), computed in
1.92s and 1.95s (also here 500 decompositions are generated
at each step). This experimental evaluation shows how the
parameter α affects the reachable set computation. In this
case, it is difficult to establish which is the best technique,
since there is not a strict inclusion. However, the areas of
the sets computed with α = 0 are smaller than the ones with
α = 1.

SIR Epidemic Model. The second case study we consider
is a 3-dimensional dynamical system that shows the benefits
of using multiple directions and parallelotopes. We study
the classic SIR epidemic model, where a population of in-
dividuals is divided in three compartments: s, the healthy
individuals but susceptible to the disease; i, the infected in-
dividuals; r the individuals removed from the system (e.g.,
recovered). Two parameters regulate the evolution of the
system variables: β, the contraction rate and γ, where 1/γ
is the mean infective period. ∆ is the discretization step.
The dynamics of the SIR model are the following:

sk+1 = sk − (βskik)∆

ik+1 = ik + (βskik − γik)∆

rk+1 = rk + (γik)∆

(7)

For this case we applied the AFO transformation without
bundle decomposition. First, we computed the reachable
set using a single axis-aligned template. Then, we added
5 directions not aligned with the axis and grouped them
in 4 different templates. In both cases we computed the
reachable sets up to 60 steps. Figure 6 shows the computed
results, i.e., the single template computation (in white) and
the four templates one (in black). In both cases the pop-
ulation is normalized and the initial set is the box with
s ∈ [0.79, 0.80], i ∈ [0.19, 0.20], and r = 0.00. The cho-
sen parameter values are β = 0.34, γ = 0.05, and ∆ = 0.5.
The single parallelotope computation required 0.05s against
the 1.04s of the 4 parallelotopes one. From the figure we can
observe that multiple templates lead to a much finer result:
the black flow is always included in the white one.

Honeybees Site Choice. In our third case study, we an-
alyze a model that describes the decision-making process
mechanism adopted by a swarm of honeybees to choose one
among two different nest-sites. In this model [7], a popula-
tion of honeybees is divided in five groups: x, the neutral
bees that have not chosen a site; y1 and y2, evangelic bees
dancing for the first and second site, respectively; z1 and
z2, non-evangelic bees that have been converted to the first

(a) OFO (white, 0.13s) and AFO (gray,
0.24s) transformations.

(b) AFO transformation without (gray,
0.24s) and with (black, 0.97s) decompo-
sition (α = 0.5).

(c) AFO transformation with decompo-
sition. α = 0 (gray, 0.95s) and α = 1
(white, 0.98s).

Figure 5: Reachable set of a 2-dimensional test system.

Figure 6: Reachable set of 3-dimensional SIR model. Sets
have been computed with 1 temp/3 dirs (in white, 0.12s),
and 4 temps/6 dirs (in black, 2.83s).

or second site, respectively, but who do not dance. The
dynamics of the system are the following:

xk+1 = xk + (−β1xky1k − β2xky2k)∆

y1k+1 = y1k + (β1xky1k − γy1k + δβ1y1kz1k + αβ1y1kz2k)∆

y2k+1 = y2k + (β2xky2k − γy2k + δβ2y2kz2k + αβ2y2kz1k)∆

z1k+1 = z1k + (γy1k − δβ1y1kz1k − αβ2y2kz1k)∆

z2k+1 = z2k + (γy2k − δβ2y2kz2k − αβ1y1kz2k)∆

(8)

The parameters β1 and β2 are the persuasion parameters,
i.e., how vigorously the evangelic bees y1 and y2 dance; δ
is the per capita rate at which the bees spontaneously leave
the neutral and non-dancing groups x, z1, z2 for the dancing
classes y1, y2; γ is the per capita rate of ceasing to dance from
the dancing classes y1, y2 to the non-dancing ones x1, x2; α
is the proportionality of switching back spontaneously to
the neutral state x; ∆ is the discretization step. Similarly
to the previous case study, the goal of this test is to study
the scalability of our method in terms of number of direc-
tions and templates, and verify eventual improvements in
the precision of the computed reachable set. For the simula-
tion of this model we choose as initial set the box with x0 =
500, y1 ∈ [390, 400], y2 ∈ [90, 100], z1 = z2 = 0. The param-
eter values are β1 = β2 = 0.001, γ = 0.3, δ = 0.5, α = 0.7,
and ∆ = 0.01. Figure 7 shows the projections of the dancing
bees y1 and y2 computed with three different configurations
up to 1500 steps. The bundles have been transformed with

(a) Dancing bees y1. (b) Dancing bees y2.

Figure 7: Projections of reachable set of 5-dimensional hon-
eybees decision-making model. Sets have been computed
with 1 temp/5 dirs (in white, 6.57s), 2 temps/6 dirs (in
gray, 26.90s), and 3 temps/7 dirs (in black, 81.27s).

the AFO method and no decomposition. In the first con-
figuration (in white), the computation has been carried out
with a single template composed by 5 axis-aligned directions
(6.57s); the second (in gray) involved 2 templates composed
by 6 directions, some of which were not aligned with the
x and y1 axis (26.90s). In the third configuration we de-
fined 3 templates composed by 7 directions, some of which
not aligned with x, y1, and y2 axis (81.27s). From Figure 7
we can see how the precision of the computed reachable set
increases with the addition of directions and templates.

Quadcopter. In our last study we focus on the scalability
of our method in terms of system dimension. In this case,
we consider the model of a quadrotor drone composed by
17 variables regulated by quadratic dynamics. The model
consists of 13 dynamics that drive the drone itself, plus 4
dynamics modeling its controller. The state variables of
the drone include the inertial position (pn, pe, h), linear ve-
locity (u, v, w), Euler angles expressed using quaternions
(q0, q1, q2, q3), and angular velocity (p, q, r), while the con-
troller variables involve some parameters of position, speed,
and angle (hI , uI , vI , ψI). Given a reference height hr, hor-
izontal speeds ur, vr, and nose angle ψr, the goal of the
controller is to bring the drone from its actual configuration
to the one specified by the reference values. The detailed
description of the model and its dynamics can be found
in [11]. All the parameters (such as mass, axis moment
of inertia, propeller masses, etc.) have been set accordingly
with the real quadcopter CrazyFlie Nano by Bitcraze3. The
chosen initial conditions are h0 ∈ [0.20, 0.21], q0 = 1, and all

3https://www.bitcraze.io/

(a) Height (h). (b) Vertical speed (w). (c) Controller height (hI).

Figure 8: Projections of reachable set of 17-dimensional quadcopter model. Sets have been computed with 1 temp/17 dirs (in
white, 17.74s), 2 temps/18 dirs (in gray, 39.07s).

the other variables are set to zero. The reference height is
hr = 1, while speeds and angle are ur = vr = ψr = 0. We
computed the reachable set up to 300 steps, corresponding
to 3s of flight. We adopted 2 configurations, both based on
AFO transformation without the bundle decomposition: the
first consists in a single box template with axis-aligned con-
straints, the second has an additional parallelotope involving
the dimensions that more vary during the flight (height, ver-
tical speed, angle quaternions, and controller height). Fig-
ure 8 shows the projections of the computed reachable sets.
The figure reports the evolutions over time of height h (Fig-
ure 8a), vertical speed w (Figure 8b), and the height com-
puted by the controller hI (Figure 8c), obtained with a single
(in white) and two templates (in gray). The first technique
took 9.40s of computations, the second 20.32s. Note how a
single additional template sensibly improves the precision of
the computed reachable set and avoids wrapping effects.

7. CONCLUSION
In this work we defined parallelotope bundles and a family

of operations that allowed us to define a reachability algo-
rithm for polynomial dynamical systems. We showed the
effectiveness of our method studying four nontrivial systems
with polynomial dynamics. The obtained data shown the
significant precision improvements with respect to the sin-
gle box/parallelotope inclusion methods.

This work lays the foundation for future developments.
An almost direct extension can be towards the reachability
analysis of parametric dynamical systems, where a set of
parameter values is provided in input. A more complicated
problem would be the parameter synthesis involving bun-
dles. Here, it is asked to refine the given parameter set so
that the system satisfies a specification. Finally, note that
all the defined operations on bundles are easily paralleliz-
able. It could be interesting to implement a parallel bundle
manipulator and investigate on the scalability in terms of
system dimension and reachable set precision.

8. REFERENCES
[1] M. Althoff and B. H. Krogh. Zonotope bundles for the

efficient computation of reachable sets. In Conference
on Decision and Control and European Control
Conference, CDC-ECC, pages 6814–6821. IEEE, 2011.

[2] M. Althoff and B. H. Krogh. Reachability analysis of
nonlinear differential-algebraic systems. IEEE Trans.
Automat. Contr., 59(2):371–383, 2014.

[3] G. Amato and F. Scozzari. The abstract domain of
parallelotopes. Electron. Notes Theor. Comput. Sci.,
287:17–28, Nov. 2012.

[4] E. Asarin, O. Bournez, T. Dang, and O. Maler.
Approximate reachability analysis of piecewise-linear
dynamical systems. In Hybrid Systems: Computation
and Control, HSCC, pages 20–31. Springer, 2000.

[5] E. Asarin, T. Dang, and A. Girard. Hybridization
methods for the analysis of nonlinear systems. Acta
Inf., 43(7):451–476, 2007.

[6] E. Asarin, T. Dang, O. Maler, and R. Testylier. Using
redundant constraints for refinement. In Automated
Technology for Verification and Analysis, ATVA,
pages 37–51, 2010.

[7] N. Britton, N. Franks, S. Pratt, and T. Seeley.
Deciding on a new home: how do honeybees agree?
Royal Society of London B: Biological Sciences,
269(1498):1383–1388, 2002.

[8] X. Chen, E. Abraham, and S. Sankaranarayanan.
Taylor model flowpipe construction for non-linear
hybrid systems. In Real-Time Systems Symposium,
RTSS, pages 183–192. IEEE, 2012.

[9] X. Chen, E. Ábrahám, and S. Sankaranarayanan.
Flow*: An analyzer for non-linear hybrid systems. In
Computer Aided Verification, CAV, pages 258–263,
2013.

[10] A. Chutinan and B. H. Krogh. Computing polyhedral
approximations to flow pipes for dynamic systems. In
Conference on Decision and Control, CDC, volume 2,
pages 2089–2094. IEEE, 1998.

[11] A. E. C. da Cunha. Benchmark: Quadrotor attitude
control. In Applied Verification for Continuous and
Hybrid Systems, ARCH, 2015.

[12] T. Dang, T. Dreossi, and C. Piazza. Parameter
synthesis using parallelotopic enclosure and
applications to epidemic models. In Hybrid Systems
and Biology, HSB, pages 67–82, 2014.

[13] T. Dang and R. Testylier. Reachability analysis for
polynomial dynamical systems using the Bernstein
expansion. Reliable Computing, 17(2):128–152, 2012.

[14] T. Dreossi and T. Dang. Parameter synthesis for
polynomial biological models. In Hybrid Systems:
Computation and Control, HSCC, pages 233–242,
2014.

[15] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton,
R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,

and O. Maler. Spaceex: Scalable verification of hybrid
systems. In Computer Aided Verification, CAV, pages
379–395. Springer, 2011.

[16] J. Garloff and A. P. Smith. Investigation of a
subdivision based algorithm for solving systems of
polynomial equations. Nonlinear Analysis: Theory,
Methods & Applications, 47(1):167–178, 2001.

[17] K. Ghorbal, E. Goubault, and S. Putot. The zonotope
abstract domain taylor1+. In Computer Aided
Verification, CAV, pages 627–633, 2009.

[18] A. Girard, C. Le Guernic, and O. Maler. Efficient
computation of reachable sets of linear time-invariant
systems with inputs. In Hybrid Systems: Computation
and Control, HSCC, pages 257–271. Springer, 2006.

[19] E. Goubault. Static analysis by abstract interpretation
of numerical programs and systems, and FLUCTUAT.
In Static Analysis Symposium, SAS, pages 1–3, 2013.

[20] Z. Han and B. Krogh. Reachability analysis of
nonlinear systems using trajectory piecewise linearized
models. In American Control Conference, ACC, pages
6 pp.–, June 2006.

[21] T. A. Henzinger, B. Horowitz, R. Majumdar, and
H. Wong-Toi. Beyond HYTECH: hybrid systems
analysis using interval numerical methods. In Hybrid
Systems: Computation and Control, HSCC, pages
130–144, 2000.

[22] E. K. Kostousovat. Control synthesis via
parallelotopes: optimzation and parallel compuations.
Optimization Methods and Software, 4(14):267–310, 1
2001.

[23] A. A. Kurzhanskiy, P. Varaiya, et al. Ellipsoidal
toolbox. EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2006-46, 2006.

[24] C. Le Guernic and A. Girard. Reachability analysis of
linear systems using support functions. Nonlinear
Analysis: Hybrid Systems, 4(2):250–262, 2010.

[25] B. Mourrain and J. P. Pavone. Subdivision methods
for solving polynomial equations. J. Symb. Comput.,
44(3):292–306, 2009.

[26] S. Ratschan and Z. She. Safety verification of hybrid
systems by constraint propagation-based abstraction
refinement. ACM Trans. Embedded Comput. Syst.,
6(1), 2007.

[27] S. Sankaranarayanan, T. Dang, and F. Ivančić.
Symbolic model checking of hybrid systems using
template polyhedra. In Tools and Algorithms for the
Construction and Analysis of Systems, TACAS, pages
188–202. Springer, 2008.

[28] S. Sankaranarayanan, H. B. Sipma, and Z. Manna.
Scalable analysis of linear systems using mathematical
programming. In Verification, Model Checking, and
Abstract Interpretation, VMCAI, pages 25–41, 2005.

[29] O. Stursberg and B. H. Krogh. Efficient representation
and computation of reachable sets for hybrid systems.
In Hybrid Systems: Computation and Control, HSCC,
pages 482–497. Springer, 2003.

