
Human-machine interface development



interACT: On-board and external HMI 



● Program an LED strip with an Arduino
○ LED strip will alert pedestrians of an autonomous 

vehicle’s awareness to their presence
● Develop signal library for Arduino

○ Write generic code for every LED strip that could
be used for interACT projects

LED strip -- Task



LED strip -- Requirements

Since the LED strip we were using isn’t being made anymore, we 
needed to write a generic signal generator program for the Arduino, 
not just for the LED strip.

● Have the Arduino output any arbitrary signal on the Arduino’s 
clock cycle

● Work for potentially any LED strip with any data packet length 
(8-bit or 12-bit)



The Arduino has library functions for writing bits to its digital pins, but 
they are very slow--much slower than the Arduino’s clock.

One way to satisfy the LPD1886’s stringent timing requirements is by 
writing Assembly code. But this is difficult to do, and Assembly is not generic 
for all LED driver ICs.

LED strip -- Issues



Assembly is the only practical way to program for this LED strip. Therefore, we
must create a generic code writer to write the Assembly for us.

Our program will accept timing requirements for a given LED strip, and then 
a C/Assembly code writer will satisfy the timing requirements in-code. 

LED strip -- Solutions



● Each ‘HIGH’ and ‘LOW’ bit in the programmer could have as many 0V- or 5V-periods as necessary.
● Each ‘bit’ would be executed on a designated Arduino pin as it arrives from the USB serial input. That is 

to say the Arduino is essentially a data interpreter and a data transcriber for the LED strip.

LED strip -- Implementation



● The programmer is given the Arduino’s timing requirements and clock frequency, and from there 
constructs correctly-timed Assembly code (or, if the timing requirements are impossible, alerts the user).

● The programmer then compiles and 
uploads this code to the Arduino.

LED strip -- Implementation



LED strip -- Results

Successes:

● Timing structures were correctly implemented
● Compilation commands were correctly set up

Failures:

● No testing on actual Arduino Assembly was done
○ IT deemed the WinAVR assembler software “unsafe”
○ As a result, the generic Assembly writer was not written

● Code for managing timing structures remained generally untested



LED strip -- Results

Basically what we have now is a bunch of unverified abstract timing 
structures that could accompany an Arduino Assembly writer.



Visual elements -- Task

● Design a standard LED strip animation and pattern data structure
○ To be cross-platform
○ Create a program that can interpret 

VisualElement_D messages from the 
Dominion application



● Way to store the VE representations must be compact and 
cross-platform

● Reading the VE representation must be relatively simple
● Programs must be able to integrate multiple VisualElement_D’s into 

LED strip animations
○ VE’s should be ‘stacked’ on one another in an LED strip display, as if they 

have a z-value.

Visual elements -- Requirements



● Sending 12-bit data structures to the Arduino is awkward
○ but necessary because the LPD1886 accepts 12-bit data structures.
○ Data must be formatted before being sent. This requires tedious bit 

manipulation.

Visual elements -- Issues



● Create monochrome bitmap files to represent the LED strip being on/off in the pixel locations
○ Architectures can parse the monochrome bitmaps into bool arrays with the help of a lightweight C++ program

● A VisualElement_D struct has a color associated with said bool array, as well as a frame frequency
○ The bitmap (bool array) is cycled through its rows and the color of the VE is displayed onto the LED strip.

● The program keeps an array of VisualElement_D’s 
and ‘stacks’ them on the LED strip.

● The USB program outputs whatever is necessary to
make the programmed pattern appear.
○ Must first manipulate the data into an 8-bit format

Visual elements -- Implementation



● Full implementation took too long to make! I plan to send updated versions of the program I wrote later 
on.

● The Bitmap writer is complete 
○ Creates beautiful monochrome bitmaps!

● As of now, the USB serial writer is nearly complete.
○ Testing still needs to be done

● The VisualElement_D manager still needs to be 
written.

Visual elements -- Results



I’ve not only written helpful programs for these applications, but I have
(most importantly) written a framework for future work.

With proper progress in each of these projects I’ve been working on, we can expect:

● Interactions between pedestrians and autonomous vehicles though visual structures
to be more easily implemented

● DLR and Dominion programming structure to be more organized

Conclusion



● Obviously, whatever work I didn’t finish should be finished
● A GUI for creating LED strip animations should be made to help 

psychologists and others who may not easily be able to use the bitmap 
backend

● Other LED strips in different locations on the car can now (soon) be integrated
● Studies can be done to see how individuals on the outside of the car react to the lights on the 

autonomous vehicle

Future work



Thank you!

Questions? Comments? Concerns?

candy?


