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Abstract— We consider two fundamental problems in con-
trol of robot manipulators: dynamic scaling of trajectories
and collision detection using proprioceptive sensors. While
most existing methods approach these problems by assuming
accurate knowledge of the robot dynamics, we relax this
assumption and account for uncertain model parameters and
external disturbances. Our approach is based on the use of a
recently proposed interval-arithmetic-based recursive Newton-
Euler algorithm. This algorithm enables the efficient numerical
computation of over-approximative sets of torques/forces arising
from uncertain model parameters. The over-approximative
nature of these sets is exploited in this work in order to provide
a formally robust trajectory scaling and collision detection
strategy. The effectiveness of the proposed approaches has been
verified by means of experiments on a 6 degrees-of-freedom
robot manipulator with uncertain dynamics.

I. INTRODUCTION

Some of the most relevant techniques currently used in
robotics are trajectory scaling and sensorless collision detec-
tion. Since most of the available approaches are model-based,
their performance relies on accurate models. In this paper,
we examine how both techniques can be made robust against
inaccurate models, by using a modern recursive algorithm
for efficient numerical computation of sets of torques/forces
accounting for model uncertainties.

We first review techniques related to the time scaling of
trajectories, or trajectory scaling in short. In time scaling, a
new scaled time is obtained by a function t ′ = f (t), which
ultimately changes the velocity along a given trajectory and
thus also the required torques [1]. A requirement in real-
world applications is that the exerted torques are always
within given constraints. Methods that build upon [1] and
merge it with path planning to generate paths that require a
minimum amount of time are presented in e.g., [2] and [3].
The authors of [4] present a scheme to dynamically scale a
trajectory online with the help of two nested control loops.
There, the inner loop ensures that the manipulator follows
the trajectory, while the outer loop scales the trajectory so
that maximum speed is obtained. An application of trajectory
scaling in car manufacturing is proposed in [5], where the
authors increase productivity of robotic assembly lines with
the help of trajectory scaling.

Next, we review techniques on sensorless collision detec-
tion of robot manipulators. This method makes it possible
to determine whether a robot collides with an obstacle or

itself based on internal sensors only. One of the very first
concepts of sensorless collision detection is presented in [6],
where the authors treat a collision as a disturbance detected
by a disturbance observer; if the disturbance is outside a
certain threshold, it can be assumed that a collision has
occurred. This disturbance observer assumes the model to
be known. An enhancement of this method that relaxes
this assumption is presented in [7] by combining sensorless
collision detection with parameter estimation: There, the
proposed method works in two consecutive phases, where in
the first phase the robot identifies the dynamical parameters
for a particular trajectory and in the second phase executes
that trajectory while being able to detect collision. In [8]
the authors first present a concise framework for detecting
a collision and then show the various steps needed for a
safe reaction movement so that the involved human is not
hurt. The authors of [9] propose a projection scheme where
they decouple dynamics of the unknown object that the
robot handles from the known dynamics of the robot itself.
Thus, they can distinguish between a disturbance caused by
a collision and one caused by manipulating the unknown
object. In [10] the authors present an adaptive scheme to
generate dynamic thresholds, so that the collision detection
is sensitive to external disturbances and still robust against
model uncertainties. The authors of [11] present and exper-
imentally compare several collision detection methods and
collision reaction strategies. They also overcome the problem
of model uncertainties by combining two different collision
detection methods. The resulting detector is then a high-pass
filter of the external disturbance. An implementation of a
collision detection and reaction scheme on a conventional
industrial robot is presented in [12], where the authors build a
dynamic collision detection threshold based on the reference
trajectory. If the current exceed this threshold, they can
distinguish between an intentional contact or an accidental
collision, for which they have different reaction strategies.
A recent survey about collision detection is presented in
[13]. There, the authors compare various collision detection
schemes and list their respective advantages and disadvan-
tages. An important remark they make is that “[a] major
practical problem is the selection of a threshold on the
monitoring signals, so as to avoid false positives and achieve
high sensitivity at the same time.” [13, p.2].

Most of the methods mentioned above rely on the as-



sumption that either the model is certain, or that an accu-
rate measurement of the torques or joint accelerations is
available. This is a drawback in some practical scenarios,
since model parameters, such as the mass associated with the
end effector when the robot manipulates various objects, can
vary substantially. Furthermore, the required measurements
for torque or acceleration are usually noisy or not available
at all. We relax this assumption by employing a recent
method proposed in [14]: The classical recursive Newton
Euler algorithm is enhanced by using interval arithmetic and
thus produces over-approximative sets of joint torques/forces
that emerge from uncertainties in the dynamical parameters
of the model. From now on we refer to this algorithm as the
interval-arithmetic-based Newton-Euler algorithm (IANEA).
A benefit of this technique is that it can compute the torque
intervals in a time complexity that is linear in the number
of joints and is thus fast enough to be used in real time. We
demonstrate how trajectory scaling and collision detection
can be solved by using IANEA to handle model uncertainties
and input disturbances.

The remainder of this paper is structured as follows:
In Sec. II-A the problem of scaling a trajectory under
model uncertainties is described in detail and the problem of
detecting a collision is explained in Sec. II-B. Subsequently,
the proposed methods are described in Sec. III and experi-
mentally verified and discussed in Sec. IV. A conclusion is
drawn in Sec. V.

II. PROBLEM STATEMENT

We consider a robot manipulator with N serially connected
links, which constitutes an open kinematic chain and is
described by the following dynamic model:

τττ =
(
MMM(qqq)+KKK2

rrrIIImmm
)

q̈qq+CCC(qqq, q̇qq)q̇qq+ggg(qqq)

+FFFvvvq̇qq+FFFcccsgn(q̇qq)+ddd,
(1)

where qqq, q̇qq and q̈qq ∈ RN are the joint position, velocity,
and acceleration vectors, respectively. MMM(qqq) ∈ RN×N is the
symmetric and positive definite inertia matrix, KKK2

rrrIIImmm ∈RN×N

is a diagonal matrix describing the influence of rotor inertias,
CCC(qqq, q̇qq)q̇qq ∈RN returns the vector of Coriolis and centrifugal
terms, ggg(qqq) ∈ RN is the vector of gravity terms, FFFvvvq̇qq ∈ RN

results in the vector of viscous friction acting on the motors,
FFFcccsgn(q̇qq) ∈RN is the vector of static friction, and ddd ∈RN is
the vector of external disturbances. Finally, the vector τττ ∈RN

represents the actuation torques/forces.
For brevity we introduce the vector ∆∆∆, which contains

the dynamical parameters of the model. The dynamical
parameters consist, among others, of masses, the coordinates
of the center of masses, the barycentric inertia tensors of each
link, the viscous and the static frictions acting on the joint
motors, the rotor inertias with gear ratios, and the empirically
obtained external disturbance torque. These parameters are
assumed to be uncertain and bounded.

The trajectory the manipulator has to follow is described
by qqqd(t), q̇qqd(t), and q̈qqd(t) ∈ RN , which are the desired joint
positions, velocities, and accelerations, respectively. Here, t

represents time and is in the interval t ∈ [t0, t f ], where t0 and
t f are the start and end times of the trajectory, respectively.

A. Trajectory Scaling

This subsection provides the problem statement for trajec-
tory scaling. We assume the actuator limits of the robot are
known. Therefore, the exerted torque of the i-th motor has
to fulfill

τi ∈ [τ−i ,τ+i ], (2)

where τ
−
i and τ

+
i are the lower and upper torque limits.

We define the duration of the movement as ∆t := t f − t0.
The framework in [1] describes how a scaled trajectory is
obtained by a constant c so that our new duration is ∆tnew =
∆t
c , and the new trajectory is described by

qqqnew(t) := qqq(ct),

q̇qqnew(t) := cq̇qq(ct),

q̈qqnew(t) := c2q̈qq(ct),

(3)

where qqqnew(t), q̇qqnew(t), and q̈qqnew(t) denote the scaled joint
position, velocity, and acceleration vectors, respectively. Fur-
thermore, if the torques before scaling can be expressed by

τττ(t) = MMM(qqq(t))q̈qq(t)+CCC(qqq(t), q̇qq(t))q̇qq(t)+ggg(qqq(t)), (4)

then the new torques τττnew are given as

τττnew(t) =c2 (MMM(qqq(ct))q̈qq(ct)+CCC(qqq(ct), q̇qq(ct))q̇qq(ct))

+ggg(qqq(ct)).
(5)

This approach, however, assumes perfect knowledge of
the dynamical parameters of the robot. We then face the
problem of adapting the trajectory scaling framework to
models with uncertain dynamic parameters and ensuring that
a resulting trajectory produces only torques that are within
the actuator limits for all possible cases within the considered
uncertainties.

B. Collision Detection

We next state the problem of sensorless collision detection
despite model uncertainties and sensor noise. Sensorless
collision detection works by estimating a torque due to
external disturbances that arise from collisions. Estimating
the torque requires an accurate model and measurements
of the trajectory. When this estimated disturbance torque is
above a certain threshold, we conclude that a collision has
occurred. Finding an appropriate threshold, however, is hard.
This threshold has to be as low as possible to detect collisions
reliably, yet be high enough as to not falsely recognize
torques generated by model uncertainties as collisions.

Now assume that only measurements of joint positions and
velocities are available. Furthermore, assume that the dynam-
ical parameters are uncertain. We then face the challenge of
finding a function ggg that generates a torque interval based on
measured joint positions, velocities and uncertain dynamical
parameters:

[τττ] = ggg(qqqm, q̇qqm, [∆∆∆]) . (6)



III. PROPOSED METHODS

Both schemes we propose rely on interval arithmetic.
It is therefore appropriate to provide some preliminaries.
Subsequently, the variables in square brackets denote mul-
tidimensional intervals. A multidimensional interval is a set
of real numbers defined as [xxx] := [xxx,xxx],xxx ∈ Rn,xxx ∈ Rn,xi ≤
xi,∀i = 1, . . . ,n. The infimum and supremum of [xxx] are
represented by xxx and xxx, respectively. Set-based operations are
defined as the result of the binary operations ∗ ∈ {+,−, ·}
of

[x]~ [y] := {x∗ y |x ∈ [x],y ∈ [y]}. (7)

For further details we direct the interested reader to [15].

A. Trajectory Scaling with uncertain dynamics

To obtain a safe scaling factor despite model uncertain-
ties, we propose the idea of first enhancing the standard
framework by a more complete model description and then
enhancing it to use interval arithmetic.

At first, we extend (5) to account explicitly for motor
inertia effects, friction, and disturbance by inserting (3) into
(1):

τττnew(t) =c2((MMM(qqq(ct))+KKK2
rrrIIImmm)q̈qq(ct)+CCC(qqq(ct), q̇qq(ct))q̇qq(ct)

)
+ cFFFvvvq̇qq(ct)+ggg(qqq(ct))+FFFcccsgn(q̇qq(ct))+ddd.

(8)

Secondly, we adapt (1) to produce torques under model
uncertainties. For this we apply interval arithmetic to it which
gives us

[τττ] =([MMM(qqq)]⊕ [KKK2
rrrIIImmm])q̈qq⊕ [CCC(qqq, q̇qq)]q̇qq⊕ [ggg(qqq)]⊕ [FFFvvv]q̇qq

⊕ [FFFccc]sgn(q̇qq)⊕ [ddd].
(9)

Considering trajectory scaling as from (4) to (5) applied
to (9) results in

[τττnew(t)] =c2(([MMM(qqq(ct))]⊕ [KKK2
rrrIIImmm])q̈qq(ct)

⊕ [CCC(qqq(ct), q̇qq(ct))]q̇qq(ct))

⊕ c[FFFvvv]q̇qq(ct)

⊕ [ggg(qqq(ct))]⊕ [FFFccc]sgn(q̇qq(ct))⊕ [ddd].

(10)

For better readability we abbreviate (10) using

[τττα(t)] :=([MMM(qqq(ct))]⊕ [KKK2
rrrIIImmm])q̈qq(ct)

⊕ [CCC(qqq(ct), q̇qq(ct))]q̇qq(ct)

[τττβ (t)] :=[FFFvvv]q̇qq(ct)

[τττ p(t)] :=[ggg(qqq(ct))]⊕ [FFFccc]sgn(q̇qq(ct))⊕ [ddd],

(11)

so that

[τττnew(t)] = c2[τττα(t)]⊕ c[τττβ (t)]⊕ [τττ p(t)]. (12)

Now the goal is to find a value for c so that ∀t:
[τnew,i(t)] ⊆ [τ−i ,τ+i ], i ∈ {1, · · · ,N}. Consequently our new
torque intervals have to fulfill the following ∀t:

∀t, i ∈ {1, · · · ,N} : τnew,i(t)≥ τ
−
i , (13)

∀t, i ∈ {1, · · · ,N} : τnew,i(t)≤ τ
+
i . (14)

Condition (13) leads to

Theorem 1. Given that the following inequalities hold:

−τβ i
(t)+

√
D−i (t)

2τα i(t)
≤ c−i (t)≤

−τβ i
(t)−

√
D−i (t)

2τα i(t)
,

if τα i(t)< 0,

0≤
−τβ i

(t)+
√

D−i (t)

2τα i(t)
≤ c−i (t), if τα i(t)> 0,

(15)

with D−i (t) := τβ i
(t)2−4τα i(t)

(
τpi

(t)− τ
−
i

)
introduced for

brevity, (13) and (14) are satisfied. Proof: See Appendix.

The variable c−i (t) is then the scaling factor that arises
when dealing with joint i and its respective lower actuator
limit τ

−
i . Since we want to speed up the trajectory as much

as possible, we choose the highest possible value for each
c−i . The scaling factor c−i (t) has to be positive; thus we get

c−i (t) :=


−τβ i

(t)−
√

D−i (t)

2τα i(t)
, if τα i(t)< 0

NaN, if τα i(t)≥ 0.

(16)

Here, NaN denotes a value that is not in R and has the
property that

min{x,NaN}= x,∀x ∈ R. (17)

Analogously, following condition (14) leads to

c+i (t) :=


NaN, if τα i(t)≤ 0

−τβ i(t)+
√

D+
i (t)

2τα i(t)
, if τα i(t)> 0,

(18)

where D+
i (t) := τβ i(t)

2−4τα i(t)
(
τpi(t)− τ

+
i

)
. We now seek

a constant value for c that is acceptable for all joints at
all times. This value is provided by the minimum over all
possible valid values. Thus we have

c = min
i,t

{
c−i (t),c

+
i (t)

}
. (19)

To ensure that the result of (19) is not NaN, we first check
whether the path is feasible under model uncertainties, i.e.,
τp

,i
(t)≥ τ

−
i ,τp,i(t)≤ τ

+
i ,∀t, i ∈ {1, . . . ,N}.

B. Collision Detection

To generate an interval within which the commanded
torque must lie, we propose the idea of extending the IANEA
from [14] to incorporate an interval for joint accelerations
and disturbance and modify it to better handle static friction.
When estimating torques based on a trajectory, we face the
problem of being unable to reliably measure joint accel-
erations. We can circumvent this problem by trusting the
controller that the difference between the real and desired
trajectory will be small, so that the real joint acceleration
will be close to the desired acceleration. We therefore treat
inaccurate but bounded tracking errors of joint accelerations
in the same way as we do for model uncertainties and thus
propose a first extension to the IANEA. We assume we
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Fig. 1: The chattering effect is visible when velocity is near
zero, here shown for axis 2.
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Fig. 2: Chattering effect is removed using the new Coulomb
friction model

can estimate the joint acceleration but with disturbance as
q̈qqm = q̈qqd + εεε , where εεε contains random noise. We cannot
know the exact value of εεε but assume that it is bounded,
εεε = [δδδ q̈]. We then have

[q̈qqm(t)] = q̈qqd(t)⊕ [δδδ q̈(t)]. (20)

The extension of the IANEA from [14] is straightforward,
and every operation that involves q̈qq becomes a set-based
operation.

A problem we experienced when considering static friction
is the chattering in the vicinity of zero velocity. Sensor noise
causes the signal to jump frequently between positive and
negative values, as shown in Fig. 1. We solve the chattering
problem in an over-approximative way by introducing two
new interval parameters to the classical Coulomb friction
model:

[τc] = Fc,1� sgn(q̇	 [Fc,3])⊕ [Fc,2], (21)

where Fc,1 is the classical Coulomb friction parameter, [Fc,2]
is an interval that accounts for friction torque uncertainties,
and [Fc,3] is an interval that accounts for velocity uncertainty
near zero, as illustrated in Fig. 3. For sufficiently large [Fc,2],
chattering disappears as shown in Fig. 2.

Another problem we experienced, is high-frequency noise
in the measured current signal, as generically shown in
Fig. 4. This noise is erroneously detected as collisions.
To reduce that noise, we low-pass filter the current signal.
This, however, introduces the problem that the current is
out of phase with respect to the thresholds, as exaggeratedly
shown in Fig. 5, and therefore, again, collisions were falsely
detected. To compensate the phase shift of the filter, we apply
the same filter to τττ and τττ , as illustrated in Fig. 6.
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u
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[Fc,2]
[Fc,3]

Fig. 3: Coulomb friction model with new interval parameters
(gray area)

time [s]0 1 2 3

threshold interval
current

Fig. 4: The measured current has high-frequency noise, that
exceeds the thresholds.

With these assumptions in place we can generate a thresh-
old interval online with

[τττ] =IANEA(qqqm, q̇qqm, [q̈qqm], [∆∆∆])⊕ [ddd] (22)

=
(
[MMM]⊕ [KKK2

rrrIIImmm]
)
� [q̈qqm]⊕ [nnn(qqq, q̇qq)]⊕ [ddd]. (23)

IV. EVALUATION

In this section the proposed methods are experimentally
evaluated. First, our method for trajectory scaling is evaluated
and subsequently the outcome of the collision detection
scheme is examined. The experiments are carried out on
a Schunk LWA-4P robot, a light-weight manipulator with
6 revolute joints, using MATLAB R2015b and SIMULINK
REAL-TIME running on a Speedgoat Intel R© CoreTMi7-
3770K 3.5 GHz. The controller is passivity-based [16, Ch.
7], with a sampling rate of 2 ms. The robot uses electric
motors with the property that a commanded current results
in a proportional torque. We measure the current; therefore,
we work with currents for the remainder of this section.

A. Trajectory Scaling Results

At first, the formula for trajectory scaling under model
uncertainties is evaluated. For this experiment the setup is
as follows: The currents ui that can be commanded to joint
motors i ∈ {1, · · · ,6} are restricted to fulfill the conditions
|u1| ≤ 8A, |u2| ≤ 8A, |u3| ≤ 8A, |u4| ≤ 8A, |u5| ≤ 2A,
and |u6| ≤ 2A. The initial configuration of the manipula-
tor at t0 = 0s is qqq0 =

[
π

4 −π

4 0 −π

4
π

2 −π

4

]T rad,
and the final configuration at time t f = 4s is qqq f =[
−π

4
π

4 0 π

4 −π

2 − 3π

4

]T rad. The trajectory is gener-
ated by a 5-th order polynomial. For the unscaled trajectory,



time [s]0 1 2 3
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Fig. 5: The filtered current is phase shifted with respect to
the thresholds.

time [s]0 1 2 3

threshold interval
current

Fig. 6: The measured current and the thresholds are both low
pass filtered.

∆t is set to 5 s. The results of the following experiments are
shown in Fig. 7. In the first and second rows one can see
the measured currents of joint motors 2 and 5, respectively.
These two motors are specifically plotted because they are
under the most stress when following the trajectories and
motor 2 is critical for computing the scaling factor. The third
row shows the tracking error when following the trajectory.
We define the tracking error e(t) ∈ R as

e(t) = ‖qqqm(t)−qqqd(t)‖ . (24)

In the first column one can see the results of the unscaled
trajectory.

We then scale the trajectory assuming the parameters are
certain and that we do not move a payload. For this we
use the nominal parameters, which yield a scaling factor
of c = 2.15 and consequently a ∆tnew of 2.33 s for our
trajectory. The measurements of this experiment are shown
in the second column of Fig. 7. As one can see, the current of
joint motor 2 saturates between t = 1s and t = 1.5s. During
this time interval this joint motor can not accurately follow
the desired trajectory anymore, and thus the tracking error
rises if scaled with the traditional method. This is due to the
fact that the nominal model we have is not accurate enough,
and as a consequence the traditional method fails.

We let the robot follow the trajectory with the same scaling
factor; this time, it manipulates a mass of 1kg with its
end effector. As expected, the controller commands more
current to the motors to ensure that the robot closely follows
the desired trajectory. In the second column, first row, one
can see the current commanded to joint motor 2. It is

clearly observable that the motor current saturates with the
traditional scaling method.

Finally we test our new approach of scaling the trajectory
when the robot has an unmodeled payload. We set the lower
and upper bounds of the dynamical parameters equal to the
nominal parameters, except for the 6-th link. Here we use
over-approximative bounds so that its mass can be within
an interval of 1.5kg to 3.0kg and the center of mass can
accordingly be shifted between 0cm and 4.2cm away from
its original center of mass. This accounts for a yet unknown
mass the robot has to manipulate. We scale the original
trajectory using the interval of dynamical parameters and
formula (19). This results in a scaling factor of c = 1.53
which corresponds to a ∆tnew of 3.26s. We then let the robot
follow the scaled trajectory while having an additional mass
of ca. 1.3kg attached to its end effector. This leads to a new
effective mass of the end effector of 1.5kg+1.3kg = 2.8kg,
which is within the bounds of the dynamical parameters. The
current commanded to joint motor 2 is plotted in the third
column. This time the current is within the limits. Here, it
is also observable that with the trajectory generated by the
traditional scaling method the currents of both joint motors
saturate, which leads to a high tracking error. Compare that
to the currents used for the trajectory generated by our new
method. Here the currents do not saturate and therefore the
tracking error is considerably lower.

B. Collision Detection Results

The dynamical parameters are set as follows: The lower
and upper bounds are set equal to the nominal model, except
for the static friction and the mass parameters of the 6th
link. Here we use over-approximative bounds. The interval of
static friction ranges from 70% to 130% of the values of the
nominal static friction. Furthermore, the values of the inertia
tensor and mass range from 100% to 200% of the value of
nominal parameters. The center of mass ranges from −4.2cm
to +4.2cm around its coordinate center. For the experiments
we first let the manipulator follow an arbitrary trajectory
without payload and disturb it twice to simulate a collision.
The first disturbance is a fast hit at around t = 2s and the
second disturbance is a push at around t = 15s. The hit and
the push are shown in Fig. 8 and Fig. 9, respectively. See
Fig. 10 which shows for each axis the commanded current
and its respective boundaries. The current stays within the
boundaries, except when the robot gets disturbed. Then the
current oversteps the thresholds.

Finally we let the robot follow the same trajectory again,
this time with a mass attached to its end effector. This leads
to an effective mass of the end effector that is within the
bounds of the dynamical parameters. We disturb the robot
at roughly the same time instances as before. As Fig. 11
shows, the current only oversteps the thresholds at the time
instances of the disturbances.

We conclude that a collision has occurred if at least
one threshold is violated. Therefore the collision could be
detected in both instances.
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with payload.

Fig. 8: The robot is hit at joint 3 and 4 (collision 1).

C. Discussion

The performance of interval-arithmetic-based trajectory
scaling and collision detection mainly depends on the amount
of uncertainty assumed in the robot model. A large amount
of uncertainty in each dynamical parameter decreases the
maximum possible scaling factor, as well as the sensitivity
of the collision detection in general. Our scheme provides
safe scaling despite model uncertainties, so that the current
stays within its actuator limits. As demonstrated with the
experimental results of trajectory scaling, the tracking error
rises when a motor current saturates. Consequently, the robot
deviates from the desired path. If the path is relevant, then
the consequences can range from loss of performance, to
instability in the control of the robot, to collisions. Thus the
trajectory must always be scaled so that no current saturates
when accurate tracking is required.

The interval-based scheme for sensorless collision detec-
tion gives over-approximative bounds for the current which

Fig. 9: The robot is pushed at joint 3 and 4 (collision 2).

envelopes the measured current. The main benefit of this
method is that we have a systematic way of finding thresh-
olds so that no false-positives are detected given the assumed
uncertainty bounds.

However, there are as of yet no identification schemes
known to the authors that are able to identify uncertainty
bounds of each dynamical parameter. One way is to assume
that our nominal model is certain (except for friction and
payload), such as we have done in this work. We then let
the disturbance vector d capture the modeling errors. If the
nominal model is accurately estimated using parameter iden-
tification schemes, the disturbance level would supposedly
stay low. In this work, however, the nominal robot model
was found using a CAD model of the robot.

If desired, it is also possible to transform the current signal
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Fig. 10: Interval-arithmetic-based collision detection without payload
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Fig. 11: Interval-arithmetic-based collision detection with payload

into a residual. This residual can be obtained by

r = cm− c0 (25)
c0 = mean([IANEA(qqqm, q̇qqm, [q̈qqm] , [∆∆∆])]), (26)

where c0 is the mean of the interval computed using an
uncertain acceleration and the nominal model. The thresholds
are transformed accordingly:

θr,up = θup− c0

θr,low = θlow− c0.

V. CONCLUSION

This paper achieves two goals: The first one is to present a
method on how to scale a trajectory despite model uncertain-
ties, so that the torques exerted by the joint motors are always
within the actuating limits. The experimental results verified
the applicability of the proposed approach. This makes it
possible to safely speed up a robot movement, even when the
dynamical parameters of the robot are not exactly known. For
this we simply combined the trajectory scaling framework
presented in [1] with the interval-arithmetic-based Newton-
Euler algorithm. The second goal is to find a method on how
to distinguish a collision from a minor disturbance despite
uncertain models. A drawback, however, is that depending
on the magnitude of the model uncertainties, the disturbance
torque needed to detect a collision can be quite high. In this
case the proposed approach is more suitable for detecting
self collisions or collisions with the environment, instead.

APPENDIX

Subsequently we show how (13) leads to (??). To prove
(??) we split (12) into the two equations

τ i =c2
τα ,i + cτβ

,i
+ τp

,i
, (27)

τ i =c2
τα ,i + cτβ ,i + τp,i. (28)

With (14) we have

c2
τα ,i + cτβ

,i
+ τp

,i
− τ
−
i ≥ 0. (29)

To improve readability of the following computations, we
define the variables

x :=c,

A :=τα ,i,

B :=τβ
,i
,

E :=τp
,i
− τ
−
i ,

(30)

so that (29) can be written as

Ax2 +Bx+E ≥ 0. (31)

In the case that A < 0 and performing algebraic manipu-



lations, we get (
x+

B
2A

)2

≤B2−4AE
(2A)2

⇔
∣∣∣∣x+ B

2A

∣∣∣∣≤
∣∣∣∣∣
√

B2−4AE
2A

∣∣∣∣∣ .
Since A< 0 it follows that +

√
B2−4AE
2A ≤ −

√
B2−4AE
2A , and thus

+
√

B2−4AE
2A

≤x+
B
2A
≤ −
√

B2−4AE
2A

.

Solving for x yields

−B+
√

B2−4AE
2A

≤x≤ −B−
√

B2−4AE
2A

. (32)

In the case that A > 0, similar algebraic manipulations yield(
x+

B
2A

)2

≥B2−4AE
(2A)2

⇔
∣∣∣∣x+ B

2A

∣∣∣∣≥
∣∣∣∣∣
√

B2−4AE
2A

∣∣∣∣∣ .

⇔


x+ B

2A ≤
−
√

B2−4AE
2A ≤ 0,

or

0≤ +
√

B2−4AE
2A ≤ x+ B

2A .

And therefore

x≤ −B−
√

B2−4AE
2A

≤ 0,

or

0≤ −B+
√

B2−4AE
2A

≤ x.

(33)

With (30), (32), and (33), and the fact that c > 0 we have

0≤
−τβ

,i
+
√

τβ
2
,i
−4τα ,i(τp

,i
− τ
−
i )

2τα ,i
≤ c, if τα ,i > 0

−τβ
,i
+
√

τβ
2
,i
−4τα ,i(τp

,i
− τ
−
i )

2τα ,i
≤ c

≤
−τβ

,i
−
√

τβ
2
,i
−4τα ,i(τp

,i
− τ
−
i )

2τα ,i
, if τα ,i < 0

(34)

The relationship between (14) and (18) can be followed by
analogous reasoning.
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