Time-Aware Congestion-Free Routing Reconfiguration

pdf

A general model is developed to study how network routing can be reconfigured quickly without incurring transient congestion. Assuming both initial and target configurations are congestion-free, it is known that transient congestion may still occur during the reconfiguration process if links contain a mix of traffic flows following old and new routing rules, resulting from variation of switch reaction time and propagation delay differences among paths. We consider these factors by explicitly incorporating timing uncertainty intervals into the model. The model leads to an optimization problem whose solution represents a fast (in terms of actual physical time) congestion-free routing reconfiguration. Our formulation naturally reduces to existing work of finding minimal number of algorithmic update steps when the timing uncertainty intervals are very large, meaning we have little prior knowledge about them. The optimization problem is shown to be a Mixed Integer Linear Program (MILP) with a polynomial-size constraint set, and is proved to be NP-hard. We then further introduce an approximation algorithm with performance guarantee to solve the problem efficiently. Several numerical examples are provided to illustrate our results. In particular, it is demonstrated that timing information can possibly accelerate the update process, even if more steps are involved.

Tags:
License: CC-2.5
Submitted by Ao Tang on
Feedback
Feedback
If you experience a bug or would like to see an addition or change on the current page, feel free to leave us a message.
Image CAPTCHA
Enter the characters shown in the image.
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.