Abstract
The objective of the research is to develop tools for comprehensive design and optimization of air traffic flow management capabilities at multiple spatial and temporal resolutions: a national airspace-wide scale and one-day time horizon (strategic time-frame); and at a regional scale (of one or a few Centers) and a two-hour time horizon (tactical time-frame). The approach is to develop a suite of tools for designing complex multi-scale dynamical networks, and in turn to use these tools to comprehensively address the strategic-to-tactical traffic flow management problem. The two directions in tool development include 1) the meshed modeling/design of flow- and queueing-networks under network topology variation for cyber- and physical- resource allocation, and 2) large-scale network simulation and numerical analysis. This research will yield aggregate modeling, management design, and validation tools for multi-scale dynamical infrastructure networks, and comprehensive solutions for national-wide strategic-to-tactical traffic flow management using these tools. The broader impact of the research lies in the significant improvement in cost and equity that may be achieved by the National Airspace System customers, and in the introduction of systematic tools for infrastructure-network design that will have impact not only in transportation but in fields such as electric power network control and health-infrastructure design. The development of an Infrastructure Network Ideas Cluster will enhance inter-disciplinary collaboration on the project topics and discussion of their potential societal impact. Activities of the cluster include cross-university undergraduate research training, seminars on technological and societal-impact aspects of the project, and new course development.
Performance Period: 09/01/2010 - 08/31/2014
Institution: Washington State University
Sponsor: National Science Foundation
Award Number: 1035369