CPS: Medium: Self-Sustaining CPS for Structural Monitoring
Lead PI:
Peter Volgyesi
Co-Pi:
Abstract
Tens of thousands of the nation?s bridges are structurally deficient. This project proposes to design a self sustaining, wireless structural monitoring system. The novel low-power Flash FPGA-based hardware platform and the corresponding software architecture offer a radically new approach to CPS design. A soft multi-core platform where software modules that run in parallel will be guaranteed to have dedicated single-threaded soft processor cores enables flexible power management by running only the necessary cores at any given time at the slowest clock rate mandated by the observed/controlled physical phenomena. As bridges tend to vibrate due to wind and dynamic load conditions, we are developing a novel vibration-based energy harvesting device that is capable of automatically adjusting its resonant response in order to capture much more energy than the current techniques can. Moreover, the PIs are developing structural health assessment techniques involving quantitative analysis of signals to determine crack type, location and size. The technology will indicate structural problems before they become critical potentially saving human lives and averting late and extensive repairs. The impact of the vibration harvesting technique and the soft multi-core architecture will go beyond structural monitoring. A separate soft core dedicated to each software component that interacts with the physical world will make CPS more responsive while saving power at the same time. The education plan focuses on outreach toward underrepresented minorities by recruiting such undergraduates to participate in the research. To facilitate the dissemination of our results, all hardware designs and software developed under this project will be open source.
Peter Volgyesi

Peter Volgyesi is a Research Scientist at the Institute for Software Integrated Systems at Vanderbilt University. In the past decade Mr. Volgyesi has been working on several novel and high impact projects sponsored by DARPA, NSF, ONR, ARL and industrial companies (Lockheed Martin, BAE Systems, the Boeing Company, Raytheon, Microsoft). He is one of the architects of the Generic Modeling Environment, a widely used metaprogrammable visual modeling tool, and WebGME - its modern web-based variant. Mr. Volgyesi had a leading role in developing the real-time signal processing algorithms in PinPtr, a low cost, low power countersniper system. He also participated in the development of the Radio Interferometric Positioning System (RIPS), a patented technology for accurate low-power node localization. As PI on two NSF funded projects Mr. Volgyesi and his team developed a low-power software-defined radio platform (MarmotE) and a component-based development toolchain targeting multicore SoC architectures for wireless cyber-physical systems. His team won the Preliminary Tournament of the DARPA Spectrum Challenge in September, 2013.

Performance Period: 10/01/2010 - 09/30/2014
Institution: Vanderbilt University
Sponsor: National Science Foundation
Award Number: 1035627