Smart Manager for Adaptive and Real-Time decisions in building clustERs
Lead PI:
Jin Wen
Abstract
1239257 (Wu). Traditionally, buildings have been viewed as mere energy consumers; however, with the new power grid infrastructure and distributed energy resources, buildings can not only consume energy, but they can also output energy. As a result, this project removes traditional boundaries between buildings in the same cluster or between the cluster and power grids, transforming individual smart buildings into NetZero building clusters enabled by cyber-support tools. In this research, a synergistic decision framework is established for temporally, spatially distributed building clusters to work as an adaptive and robust system within a smart grid. The framework includes innovative algorithms and tools for building energy modeling, intelligent data fusion, decentralized decisions and adaptive decisions to address theoretical and practical challenges in next-generation building systems. The research develops cyber-physical engineering tools for demand side load management which has been identified as a major challenge by energy industries. It fundamentally transforms the current centralized and uni-directional power distribution business model to a decentralized and multi-directional power sharing and distribution business model, reducing overall energy consumption and allowing for optimal decisions in changing operation environments. Education and outreach efforts include developing novel educational modules disseminated at the K-12 levels and through the ASEE eGFI repository. Further educational impact occurs through integration with multiple undergraduate and graduate courses at each institution, and with community service groups. Impact is also expanded to the broader energy industry and the operation of healthcare delivery and urban transportation systems through our industry collaborations. http://swag.engineering.asu.edu/ 1239247 (Wen). Traditionally, buildings have been viewed as mere energy consumers; however, with the new power grid infrastructure and distributed energy resources, buildings can not only consume energy, but they can also output energy. As a result, this project removes traditional boundaries between buildings in the same cluster or between the cluster and power grids, transforming individual smart buildings into NetZero building clusters enabled by cyber-support tools. In this research, a synergistic decision framework is established for temporally, spatially distributed building clusters to work as an adaptive and robust system within a smart grid. The framework includes innovative algorithms and tools for building energy modeling, intelligent data fusion, decentralized decisions and adaptive decisions to address theoretical and practical challenges in next-generation building systems. The research develops cyber-physical engineering tools for demand side load management which has been identified as a major challenge by energy industries. It fundamentally transforms the current centralized and uni-directional power distribution business model to a decentralized and multi-directional power sharing and distribution business model, reducing overall energy consumption and allowing for optimal decisions in changing operation environments. Education and outreach efforts include developing novel educational modules disseminated at the K-12 levels and through the ASEE eGFI repository. Further educational impact occurs through integration with multiple undergraduate and graduate courses at each institution, and with community service groups. Impact is also expanded to the broader energy industry and the operation of healthcare delivery and urban transportation systems through our industry collaborations. http://swag.engineering.asu.edu/ 1239093 (Lewis). Traditionally, buildings have been viewed as mere energy consumers; however, with the new power grid infrastructure and distributed energy resources, buildings can not only consume energy, but they can also output energy. As a result, this project removes traditional boundaries between buildings in the same cluster or between the cluster and power grids, transforming individual smart buildings into NetZero building clusters enabled by cyber-support tools. In this research, a synergistic decision framework is established for temporally, spatially distributed building clusters to work as an adaptive and robust system within a smart grid. The framework includes innovative algorithms and tools for building energy modeling, intelligent data fusion, decentralized decisions and adaptive decisions to address theoretical and practical challenges in next-generation building systems. The research develops cyber-physical engineering tools for demand side load management which has been identified as a major challenge by energy industries. It fundamentally transforms the current centralized and uni-directional power distribution business model to a decentralized and multi-directional power sharing and distribution business model, reducing overall energy consumption and allowing for optimal decisions in changing operation environments. Education and outreach efforts include developing novel educational modules disseminated at the K-12 levels and through the ASEE eGFI repository. Further educational impact occurs through integration with multiple undergraduate and graduate courses at each institution, and with community service groups. Impact is also expanded to the broader energy industry and the operation of healthcare delivery and urban transportation systems through our industry collaborations.
Performance Period: 10/01/2012 - 09/30/2016
Institution: Drexel University
Sponsor: National Science Foundation
Award Number: 1239247