CPS: Frontiers: Collaborative Research: ROSELINE: Enabling Robust, Secure and Efficient Knowledge of Time Across the System Stack
Lead PI:
Anthony Rowe
Co-PI:
Abstract
Accurate and reliable knowledge of time is fundamental to cyber-physical systems for sensing, control, performance, and energy efficient integration of computing and communications. This statement underlies the proposal. Emerging CPS applications depend on precise knowledge of time to infer location and control communication. There is a diversity of semantics used to describe time, and quality of time varies as we move up and down the system stack. System designs tend to overcompensate for these uncertainties and the result is systems that may be over designed, inefficient, and fragile. The intellectual merit derives from the new and fundamental concept of time and the holistic measure of quality of time (QoT) that captures metrics including resolution, accuracy, and stability. The proposal builds a system stack ("ROSELINE") that enables new ways for clock hardware, operating system, network services, and applications to learn, maintain and exchange information about time, influence component behavior, and robustly adapt to dynamic QoT requirements, as well as to benign and adversarial changes in operating conditions. Application areas that will benefit from Quality of Time will include: smart grad, networked and coordinated control of aerospace systems, underwater sensing, and industrial automation. The broader impact of the proposal is due to the foundational nature of the work which builds a robust and tunable quality of time that can be applied across a broad spectrum of applications that pervade modern life. The proposal will also provide valuable opportunities to integrate research and education in graduate, undergraduate, and K-12 classrooms. There will be extensive outreach through publications, open sourcing of software, and participation in activities such as the Los Angeles Computing Circle for pre-college students.
Performance Period: 06/15/2014 - 05/31/2019
Institution: Carnegie Mellon University
Sponsor: National Science Foundation
Award Number: 1329644