Visible to the public Synergy: Collaborative: Security and Privacy-Aware Cyber-Physical SystemsConflict Detection Enabled

Project Details
Lead PI:Lee Insup
Co-PI(s):George Pappas
Sokolsky Oleg
Nadia Heninger
Andreas Haeberlen
Performance Period:09/15/15 - 08/31/18
Institution(s):University of Pennsylvania
Sponsor(s):National Science Foundation
Award Number:1505799
876 Reads. Placed 257 out of 803 NSF CPS Projects based on total reads on all related artifacts.
Abstract: Security and privacy concerns in the increasingly interconnected world are receiving much attention from the research community, policymakers, and general public. However, much of the recent and on-going efforts concentrate on security of general-purpose computation and on privacy in communication and social interactions. The advent of cyber-physical systems (e.g., safety-critical IoT), which aim at tight integration between distributed computational intelligence, communication networks, physical world, and human actors, opens new horizons for intelligent systems with advanced capabilities. These systems may reduce number of accidents and increase throughput of transportation networks, improve patient safety, mitigate caregiver errors, enable personalized treatments, and allow older adults to age in their places. At the same time, cyber-physical systems introduce new challenges and concerns about safety, security, and privacy. The proposed project will lead to safer, more secure and privacy preserving CPS. As our lives depend more and more on these systems, specifically in automotive, medical, and Internet-of-Things domains, results obtained in this project will have a direct impact on the society at large. The study of emerging legal and ethical aspects of large-scale CPS deployments will inform future policy decision-making. The educational and outreach aspects of this project will help us build a workforce that is better prepared to address the security and privacy needs of the ever-more connected and technologically oriented society. Cyber-physical systems (CPS) involve tight integration of computational nodes, connected by one or more communication networks, the physical environment of these nodes, and human users of the system, who interact with both the computational part of the system and the physical environment. Attacks on a CPS system may affect all of its components: computational nodes and communication networks are subject to malicious intrusions, and physical environment may be maliciously altered. CPS-specific security challenges arise from two perspectives. On the one hand, conventional information security approaches can be used to prevent intrusions, but attackers can still affect the system via the physical environment. Resource constraints, inherent in many CPS domains, may prevent heavy-duty security approaches from being deployed. This proposal will develop a framework in which the mix of prevention, detection and recovery, and robust techniques work together to improve the security and privacy of CPS. Specific research products will include techniques providing: 1) accountability-based detection and bounded-time recovery from malicious attacks to CPS, complemented by novel preventive techniques based on lightweight cryptography; 2) security-aware control design based on attack resilient state estimator and sensor fusions; 3) privacy of data collected and used by CPS based on differential privacy; and, 4) evidence-based framework for CPS security and privacy assurance, taking into account the operating context of the system and human factors. Case studies will be performed in applications with autonomous features of vehicles, internal and external vehicle networks, medical device interoperability, and smart connected medical home.