Visible to the public CAREER: Co-Design of Networking and Decentralized Control to Enable Aerial Networks in an Uncertain AirspaceConflict Detection Enabled

Project Details
Lead PI:Yan Wan
Performance Period:09/01/16 - 05/31/20
Institution(s):University of Texas at Arlington
Sponsor(s):National Science Foundation
Award Number:1714519
380 Reads. Placed 475 out of 803 NSF CPS Projects based on total reads on all related artifacts.
Abstract: Airborne networking, unlike the networking of fixed sensors, mobile devices, and slowly-moving vehicles, is very challenging because of the high mobility, stringent safety requirements, and uncertain airspace environment. Airborne networking is important because of the growing complexity of the National Airspace System with the integration of unmanned aerial vehicles (UAVs). This project develops an innovative new theoretical framework for cyber-physical systems (CPS) to enable airborne networking, which utilizes direct flight-to-to-flight communication for flexible information sharing, safe maneuvering, and coordination of time-critical missions. This project uses an innovative co-design approach that exploits the mutual benefits of networking and decentralized mobility control in an uncertain heterogeneous environment. The approach departs from the usual perspective that views physical mobility as communication constraints, communication as constraints for decentralized mobility control, and uncertain environment as constraints for both. Instead, approach taken here proactively exploits the constraints, uncertainty, and new structures with information to enable high-performance designs. The features of the co-design such as scalability, fast response, trackability, and robustness to uncertainty advance the core CPS science on decision-making for large-scale networks under uncertainty. The technological advances developed in this research will contribute to multiple fields, including mobile networking, decentralized control, experiment design, and general real-time decision making under uncertainty for CPS. Technology transfer will be pursued through close collaboration with industries and national laboratories. This novel research direction will also serve as a unique backdrop to inspire the CPS workforce. New teaching materials will benefit the future CPS workforce by equipping them with a knowledge base in networking and control. Broad outreach and dissemination activities that involve undergraduate student societies, K-12 school teaching, and public events, all stemming from the PI's current efforts, will be enhanced.