Visible to the public Biblio

Found 1565 results

Filters: First Letter Of Last Name is D  [Clear All Filters]
2020
DiMase, D., Collier, Z. A., Chandy, J., Cohen, B. S., D'Anna, G., Dunlap, H., Hallman, J., Mandelbaum, J., Ritchie, J., Vessels, L..  2020.  A Holistic Approach to Cyber Physical Systems Security and Resilience. 2020 IEEE Systems Security Symposium (SSS). :1—8.

A critical need exists for collaboration and action by government, industry, and academia to address cyber weaknesses or vulnerabilities inherent to embedded or cyber physical systems (CPS). These vulnerabilities are introduced as we leverage technologies, methods, products, and services from the global supply chain throughout a system's lifecycle. As adversaries are exploiting these weaknesses as access points for malicious purposes, solutions for system security and resilience become a priority call for action. The SAE G-32 Cyber Physical Systems Security Committee has been convened to address this complex challenge. The SAE G-32 will take a holistic systems engineering approach to integrate system security considerations to develop a Cyber Physical System Security Framework. This framework is intended to bring together multiple industries and develop a method and common language which will enable us to more effectively, efficiently, and consistently communicate a risk, cost, and performance trade space. The standard will allow System Integrators to make decisions utilizing a common framework and language to develop affordable, trustworthy, resilient, and secure systems.

Li, Y., Yang, Y., Yu, X., Yang, T., Dong, L., Wang, W..  2020.  IoT-APIScanner: Detecting API Unauthorized Access Vulnerabilities of IoT Platform. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1—5.

The Internet of Things enables interaction between IoT devices and users through the cloud. The cloud provides services such as account monitoring, device management, and device control. As the center of the IoT platform, the cloud provides services to IoT devices and IoT applications through APIs. Therefore, the permission verification of the API is essential. However, we found that some APIs are unverified, which allows unauthorized users to access cloud resources or control devices; it could threaten the security of devices and cloud. To check for unauthorized access to the API, we developed IoT-APIScanner, a framework to check the permission verification of the cloud API. Through observation, we found there is a large amount of interactive information between IoT application and cloud, which include the APIs and related parameters, so we can extract them by analyzing the code of the IoT application, and use this for mutating API test cases. Through these test cases, we can effectively check the permissions of the API. In our research, we extracted a total of 5 platform APIs. Among them, the proportion of APIs without permission verification reached 13.3%. Our research shows that attackers could use the API without permission verification to obtain user privacy or control of devices.

Kuk, K., Milić, P., Denić, S..  2020.  Object-oriented software metrics in software code vulnerability analysis. 2020 International Conference on INnovations in Intelligent SysTems and Applications (INISTA). :1—6.

Development of quality object-oriented software contains security as an integral aspect of that process. During that process, a ceaseless burden on the developers was posed in order to maximize the development and at the same time to reduce the expense and time invested in security. In this paper, the authors analyzed metrics for object-oriented software in order to evaluate and identify the relation between metric value and security of the software. Identification of these relations was achieved by study of software vulnerabilities with code level metrics. By using OWASP classification of vulnerabilities and experimental results, we proved that there was relation between metric values and possible security issues in software. For experimental code analysis, we have developed special software called SOFTMET.

Liu, W., Niu, H., Luo, W., Deng, W., Wu, H., Dai, S., Qiao, Z., Feng, W..  2020.  Research on Technology of Embedded System Security Protection Component. 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications( AEECA). :21—27.

With the development of the Internet of Things (IoT), it has been widely deployed. As many embedded devices are connected to the network and massive amounts of security-sensitive data are stored in these devices, embedded devices in IoT have become the target of attackers. The trusted computing is a key technology to guarantee the security and trustworthiness of devices' execution environment. This paper focuses on security problems on IoT devices, and proposes a security architecture for IoT devices based on the trusted computing technology. This paper implements a security management system for IoT devices, which can perform integrity measurement, real-time monitoring and security management for embedded applications, providing a safe and reliable execution environment and whitelist-based security protection for IoT devices. This paper also designs and implements an embedded security protection system based on trusted computing technology, containing a measurement and control component in the kernel and a remote graphical management interface for administrators. The kernel layer enforces the integrity measurement and control of the embedded application on the device. The graphical management interface communicates with the remote embedded device through the TCP/IP protocol, and provides a feature-rich and user-friendly interaction interface. It implements functions such as knowledge base scanning, whitelist management, log management, security policy management, and cryptographic algorithm performance testing.

Deng, M., Wu, X., Feng, P., Zeng, W..  2020.  Sparse Support Vector Machine for Network Behavior Anomaly Detection. 2020 IEEE 8th International Conference on Information, Communication and Networks (ICICN). :199–204.
Network behavior anomaly detection (NBAD) require fast mechanisms for learning from the large scale data. However, the training velocity of general machine learning approach is largely limited by the adopted training weights of all features in the NBAD. In this paper, we notice, however, that the related weights matching of NBAD features is sparse, which is not necessary for holding all weights. Hence, in this paper, we consider an efficient support vector machine (SVM) approach for NBAD by imposing 1 -norm. Essentially, we propose to use sparse SVM (S-SVM), where sparsity in model, i.e. in weights is used to interfere with special feature selection and that can achieve feature selection and classification efficiently.
Li, K., Ren, A., Ding, Y., Shi, Y., Wang, X..  2020.  Research on Decentralized Identity and Access Management Model Based on the OIDC Protocol. 2020 International Conference on E-Commerce and Internet Technology (ECIT). :252—255.

In the increasingly diverse information age, various kinds of personal information security problems continue to break out. According to the idea of combination of identity authentication and encryption services, this paper proposes a personal identity access management model based on the OIDC protocol. The model will integrate the existing personal security information and build a set of decentralized identity authentication and access management application cluster. The advantage of this model is to issue a set of authentication rules, so that all users can complete the authentication of identity access of all application systems in the same environment at a lower cost, and can well compatible and expand more categories of identity information. Therefore, this method not only reduces the number of user accounts, but also provides a unified and reliable authentication service for each application system.

Liu, H., Di, W..  2020.  Application of Differential Privacy in Location Trajectory Big Data. 2020 International Conference on Intelligent Transportation, Big Data Smart City (ICITBS). :569—573.

With the development of mobile internet technology, GPS technology and social software have been widely used in people's lives. The problem of big data privacy protection related to location trajectory is becoming more and more serious. The traditional location trajectory privacy protection method requires certain background knowledge and it is difficult to adapt to massive mass. Privacy protection of data. differential privacy protection technology protects privacy by attacking data by randomly perturbing raw data. The method used in this paper is to first sample the position trajectory, form the irregular polygons of the high-frequency access points in the sampling points and position data, calculate the center of gravity of the polygon, and then use the differential privacy protection algorithm to add noise to the center of gravity of the polygon to form a new one. The center of gravity, and the new center of gravity are connected to form a new trajectory. The purpose of protecting the position trajectory is well achieved. It is proved that the differential privacy protection algorithm can effectively protect the position trajectory by adding noise.

Kalin, J., Ciolino, M., Noever, D., Dozier, G..  2020.  Black Box to White Box: Discover Model Characteristics Based on Strategic Probing. 2020 Third International Conference on Artificial Intelligence for Industries (AI4I). :60—63.

In Machine Learning, White Box Adversarial Attacks rely on knowing underlying knowledge about the model attributes. This works focuses on discovering to distrinct pieces of model information: the underlying architecture and primary training dataset. With the process in this paper, a structured set of input probes and the output of the model become the training data for a deep classifier. Two subdomains in Machine Learning are explored - image based classifiers and text transformers with GPT-2. With image classification, the focus is on exploring commonly deployed architectures and datasets available in popular public libraries. Using a single transformer architecture with multiple levels of parameters, text generation is explored by fine tuning off different datasets. Each dataset explored in image and text are distinguishable from one another. Diversity in text transformer outputs implies further research is needed to successfully classify architecture attribution in text domain.

Ayeb, Neil, Rutten, Eric, Bolle, Sebastien, Coupaye, Thierry, Douet, Marc.  2020.  Coordinated autonomic loops for target identification, load and error-aware Device Management for the IoT. 2020 15th Conference on Computer Science and Information Systems (FedCSIS). :491—500.
With the expansion of Internet of Things (IoT) that relies on heterogeneous, dynamic, and massively deployed devices, device management (DM) (i.e., remote administration such as firmware update, configuration, troubleshooting and tracking) is required for proper quality of service and user experience, deployment of new functions, bug corrections and security patches distribution. Existing industrial DM platforms and approaches do not suit IoT devices and are already showing their limits with a few static home devices (e.g., routers, TV Decoders). Indeed, undetected buggy firmware deployment and manual target device identification are common issues in existing systems. Besides, these platforms are manually operated by experts (e.g., system administrators) and require extensive knowledge and skills. Such approaches cannot be applied on massive and diverse devices forming the IoT. To tackle these issues, our work in an industrial research context proposes to apply autonomic computing to DM platforms operation and impact tracking. Specifically, our contribution relies on automated device targeting (i.e., aiming only suitable devices) and impact-aware DM (i.e., error and anomalies detection preceding patch generalization on all suitable devices of a given fleet). Our solution is composed of three coordinated autonomic loops and allows more accurate and faster irregularity diagnosis, vertical scaling along with simpler IoT DM platform administration. For experimental validation, we developed a prototype that demonstrates encouraging results compared to simulated legacy telecommunication operator approaches (namely Orange).
Nyasore, O. N., Zavarsky, P., Swar, B., Naiyeju, R., Dabra, S..  2020.  Deep Packet Inspection in Industrial Automation Control System to Mitigate Attacks Exploiting Modbus/TCP Vulnerabilities. 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :241–245.

Modbus TCP/IP protocol is a commonly used protocol in industrial automation control systems, systems responsible for sensitive operations such as gas turbine operation and refinery control. The protocol was designed decades ago with no security features in mind. Denial of service attack and malicious parameter command injection are examples of attacks that can exploit vulnerabilities in industrial control systems that use Modbus/TCP protocol. This paper discusses and explores the use of intrusion detection and prevention systems (IDPS) with deep packet inspection (DPI) capabilities and DPI industrial firewalls that have capability to detect and stop highly specialized attacks hidden deep in the communication flow. The paper has the following objectives: (i) to develop signatures for IDPS for common attacks on Modbus/TCP based network architectures; (ii) to evaluate performance of three IDPS - Snort, Suricata and Bro - in detecting and preventing common attacks on Modbus/TCP based control systems; and (iii) to illustrate and emphasize that the IDPS and industrial firewalls with DPI capabilities are not preventing but only mitigating likelihood of exploitation of Modbus/TCP vulnerabilities in the industrial and automation control systems. The results presented in the paper illustrate that it might be challenging task to achieve requirements on real-time communication in some industrial and automation control systems in case the DPI is implemented because of the latency and jitter introduced by these IDPS and DPI industrial firewall.

Tahsini, A., Dunstatter, N., Guirguis, M., Ahmed, C. M..  2020.  DeepBLOC: A Framework for Securing CPS through Deep Reinforcement Learning on Stochastic Games. 2020 IEEE Conference on Communications and Network Security (CNS). :1–9.

One important aspect in protecting Cyber Physical System (CPS) is ensuring that the proper control and measurement signals are propagated within the control loop. The CPS research community has been developing a large set of check blocks that can be integrated within the control loop to check signals against various types of attacks (e.g., false data injection attacks). Unfortunately, it is not possible to integrate all these “checks” within the control loop as the overhead introduced when checking signals may violate the delay constraints of the control loop. Moreover, these blocks do not completely operate in isolation of each other as dependencies exist among them in terms of their effectiveness against detecting a subset of attacks. Thus, it becomes a challenging and complex problem to assign the proper checks, especially with the presence of a rational adversary who can observe the check blocks assigned and optimizes her own attack strategies accordingly. This paper tackles the inherent state-action space explosion that arises in securing CPS through developing DeepBLOC (DB)-a framework in which Deep Reinforcement Learning algorithms are utilized to provide optimal/sub-optimal assignments of check blocks to signals. The framework models stochastic games between the adversary and the CPS defender and derives mixed strategies for assigning check blocks to ensure the integrity of the propagated signals while abiding to the real-time constraints dictated by the control loop. Through extensive simulation experiments and a real implementation on a water purification system, we show that DB achieves assignment strategies that outperform other strategies and heuristics.

Arunpandian, S., Dhenakaran, S. S..  2020.  DNA based Computing Encryption Scheme Blending Color and Gray Images. 2020 International Conference on Communication and Signal Processing (ICCSP). :0966–0970.

In this paper, a novel DNA based computing method is proposed for encryption of biometric color(face)and gray fingerprint images. In many applications of present scenario, gray and color images are exhibited major role for authenticating identity of an individual. The values of aforementioned images have considered as two separate matrices. The key generation process two level mathematical operations have applied on fingerprint image for generating encryption key. For enhancing security to biometric image, DNA computing has done on the above matrices generating DNA sequence. Further, DNA sequences have scrambled to add complexity to biometric image. Results of blending images, image of DNA computing has shown in experimental section. It is observed that the proposed substitution DNA computing algorithm has shown good resistant against statistical and differential attacks.

Moustafa, N., Keshky, M., Debiez, E., Janicke, H..  2020.  Federated TONİoT Windows Datasets for Evaluating AI-Based Security Applications. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :848—855.

Existing cyber security solutions have been basically developed using knowledge-based models that often cannot trigger new cyber-attack families. With the boom of Artificial Intelligence (AI), especially Deep Learning (DL) algorithms, those security solutions have been plugged-in with AI models to discover, trace, mitigate or respond to incidents of new security events. The algorithms demand a large number of heterogeneous data sources to train and validate new security systems. This paper presents the description of new datasets, the so-called ToNİoT, which involve federated data sources collected from Telemetry datasets of IoT services, Operating system datasets of Windows and Linux, and datasets of Network traffic. The paper introduces the testbed and description of TONİoT datasets for Windows operating systems. The testbed was implemented in three layers: edge, fog and cloud. The edge layer involves IoT and network devices, the fog layer contains virtual machines and gateways, and the cloud layer involves cloud services, such as data analytics, linked to the other two layers. These layers were dynamically managed using the platforms of software-Defined Network (SDN) and Network-Function Virtualization (NFV) using the VMware NSX and vCloud NFV platform. The Windows datasets were collected from audit traces of memories, processors, networks, processes and hard disks. The datasets would be used to evaluate various AI-based cyber security solutions, including intrusion detection, threat intelligence and hunting, privacy preservation and digital forensics. This is because the datasets have a wide range of recent normal and attack features and observations, as well as authentic ground truth events. The datasets can be publicly accessed from this link [1].

Arthy, R., Daniel, E., Maran, T. G., Praveen, M..  2020.  A Hybrid Secure Keyword Search Scheme in Encrypted Graph for Social Media Database. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :1000–1004.

Privacy preservation is a challenging task with the huge amount of data that are available in social media. The data those are stored in the distributed environment or in cloud environment need to ensure confidentiality to data. In addition, representing the voluminous data is graph will be convenient to perform keyword search. The proposed work initially reads the data corresponding to social media and converts that into a graph. In order to prevent the data from the active attacks Advanced Encryption Standard algorithm is used to perform graph encryption. Later, search operation is done using two algorithms: kNK keyword search algorithm and top k nearest keyword search algorithm. The first scheme is used to fetch all the data corresponding to the keyword. The second scheme is used to fetch the nearest neighbor. This scheme increases the efficiency of the search process. Here shortest path algorithm is used to find the minimum distance. Now, based on the minimum value the results are produced. The proposed algorithm shows high performance for graph generation and searching and moderate performance for graph encryption.

Santos, Bernardo, Dzogovic, Bruno, Feng, Boning, Jacot, Niels, Do, Van Thuan, Do, Thanh Van.  2020.  Improving Cellular IoT Security with Identity Federation and Anomaly Detection. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :776—780.

As we notice the increasing adoption of Cellular IoT solutions (smart-home, e-health, among others), there are still some security aspects that can be improved as these devices can suffer various types of attacks that can have a high-impact over our daily lives. In order to avoid this, we present a multi-front security solution that consists on a federated cross-layered authentication mechanism, as well as a machine learning platform with anomaly detection techniques for data traffic analysis as a way to study devices' behavior so it can preemptively detect attacks and minimize their impact. In this paper, we also present a proof-of-concept to illustrate the proposed solution and showcase its feasibility, as well as the discussion of future iterations that will occur for this work.

Chai, L., Ren, P., Du, Q..  2020.  A Secure Transmission Scheme Based on Efficient Transmission Fountain Code. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :600–604.

Improving the security of data transmission in wireless channels is a key and challenging problem in wireless communication. This paper presents a data security transmission scheme based on high efficiency fountain code. If the legitimate receiver can decode all the original files before the eavesdropper, it can guarantee the safe transmission of the data, so we use the efficient coding scheme of the fountain code to ensure the efficient transmission of the data, and add the feedback mechanism to the transmission of the fountain code so that the coding scheme can be updated dynamically according to the decoding situation of the legitimate receiver. Simulation results show that the scheme has high security and transmitter transmission efficiency in the presence of eavesdropping scenarios.

Moskvichev, A. D., Dolgachev, M. V..  2020.  System of Collection and Analysis Event Log from Sources under Control of Windows Operating System. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). :1—5.

The purpose of this work is to implement a universal system for collecting and analyzing event logs from sources that use the Windows operating system. The authors use event-forwarding technology to collect data from logs. Security information and event management detects incidents from received events. The authors analyze existing methods for transmitting event log entries from sources running the Windows operating system. This article describes in detail how to connect event sources running on the Windows operating system to the event collector without connecting to a domain controller. Event sources are authenticated using certificates created by the event collector. The authors suggest a scheme for connecting the event collector to security information and event management. Security information and event management must meet the requirements for use in conjunction with event forwarding technology. The authors of the article demonstrate the scheme of the test stand and the result of testing the event forwarding technology.

Dangal, P., Bloom, G..  2020.  Towards Industrial Security Through Real-time Analytics. 2020 IEEE 23rd International Symposium on Real-Time Distributed Computing (ISORC). :156–157.

Industrial control system (ICS) denotes a system consisting of actuators, control stations, and network that manages processes and functions in an industrial setting. The ICS community faces two major problems to keep pace with the broader trends of Industry 4.0: (1) a data rich, information poor (DRIP) syndrome, and (2) risk of financial and safety harms due to security breaches. In this paper, we propose a private cloud in the loop ICS architecture for real-time analytics that can bridge the gap between low data utilization and security hardening.

Dylan Wang, Melody Moh, Teng-Sheng Moh.  2020.  Using Deep Learning to Solve Google reCAPTCHA v2’s Image Challenges.

The most popular CAPTCHA service in use today is Google reCAPTCHA v2, whose main offering is an image-based CAPTCHA challenge. This paper looks into the security measures used in reCAPTCHA v2's image challenges and proposes a deep learning-based solution that can be used to automatically solve them. The proposed method is tested with both a custom object- detection deep learning model as well as Google's own Cloud Vision API, in conjunction with human mimicking mouse movements to bypass the challenges. The paper also suggests some potential defense measures to increase overall security and other additional attack directions for reCAPTCHA v2.

Willcox, G., Rosenberg, L., Domnauer, C..  2020.  Analysis of Human Behaviors in Real-Time Swarms. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). :0104–0109.
Many species reach group decisions by deliberating in real-time systems. This natural process, known as Swarm Intelligence (SI), has been studied extensively in a range of social organisms, from schools of fish to swarms of bees. A new technique called Artificial Swarm Intelligence (ASI) has enabled networked human groups to reach decisions in systems modeled after natural swarms. The present research seeks to understand the behavioral dynamics of such “human swarms.” Data was collected from ten human groups, each having between 21 and 25 members. The groups were tasked with answering a set of 25 ordered ranking questions on a 1-5 scale, first independently by survey and then collaboratively as a real-time swarm. We found that groups reached significantly different answers, on average, by swarm versus survey ( p=0.02). Initially, the distribution of individual responses in each swarm was little different than the distribution of survey responses, but through the process of real-time deliberation, the swarm's average answer changed significantly ( ). We discuss possible interpretations of this dynamic behavior. Importantly, the we find that swarm's answer is not simply the arithmetic mean of initial individual “votes” ( ) as in a survey, suggesting a more complex mechanism is at play-one that relies on the time-varying behaviors of the participants in swarms. Finally, we publish a set of data that enables other researchers to analyze human behaviors in real-time swarms.
Žulj, S., Delija, D., Sirovatka, G..  2020.  Analysis of secure data deletion and recovery with common digital forensic tools and procedures. 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). :1607–1610.
This paper presents how students practical’s is developed and used for the important task forensic specialist have to do when using common digital forensic tools for data deletion and data recovery from various types of digital media and live systems. Digital forensic tools like EnCase, FTK imager, BlackLight, and open source tools are discussed in developed practical’s scenarios. This paper shows how these tools can be used to train and enhance student understanding of the capabilities and limitations of digital forensic tools in uncommon digital forensic scenarios. Students’ practicals encourage students to efficiently use digital forensic tools in the various professional scenarios that they will encounter.
Tran, Q. T., Tran, D. D., Doan, D., Nguyen, M. S..  2020.  An Approach of BLE Mesh Network For Smart Home Application. 2020 International Conference on Advanced Computing and Applications (ACOMP). :170–174.
Internet of Things (IoT) now has extremely wide applications in many areas of life such as urban management, environmental management, smart shopping, and smart home. Because of the wide range of application fields, the IoT infrastructures are built differently. To make an IoT system indoor with high efficiency and more convenience, a case study for smart home security using Bluetooth Mesh approach is introduced. By using Bluetooth Mesh technology in home security, the user can open the door everywhere inside their house. The system work in a flexible way since it can extend the working range of network. In addition, the system can monitor the state of both the lock and any node in network by using a gateway to transfer data to cloud and enable a website-based interface.
Feng, Xiaohua, Feng, Yunzhong, Dawam, Edward Swarlat.  2020.  Artificial Intelligence Cyber Security Strategy. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :328—333.
Nowadays, STEM (science, technology, engineering and mathematics) have never been treated so seriously before. Artificial Intelligence (AI) has played an important role currently in STEM. Under the 2020 COVID-19 pandemic crisis, coronavirus disease across over the world we are living in. Every government seek advices from scientist before making their strategic plan. Most of countries collect data from hospitals (and care home and so on in the society), carried out data analysis, using formula to make some AI models, to predict the potential development patterns, in order to make their government strategy. AI security become essential. If a security attack make the pattern wrong, the model is not a true prediction, that could result in thousands life loss. The potential consequence of this non-accurate forecast would be even worse. Therefore, take security into account during the forecast AI modelling, step-by-step data governance, will be significant. Cyber security should be applied during this kind of prediction process using AI deep learning technology and so on. Some in-depth discussion will follow.AI security impact is a principle concern in the world. It is also significant for both nature science and social science researchers to consider in the future. In particular, because many services are running on online devices, security defenses are essential. The results should have properly data governance with security. AI security strategy should be up to the top priority to influence governments and their citizens in the world. AI security will help governments' strategy makers to work reasonably balancing between technologies, socially and politics. In this paper, strategy related challenges of AI and Security will be discussed, along with suggestions AI cyber security and politics trade-off consideration from an initial planning stage to its near future further development.
Dmitrievich, Asyaev Grigorii, Nikolaevich, Sokolov Aleksandr.  2020.  Automated Process Control Anomaly Detection Using Machine Learning Methods. 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :0536–0538.
The paper discusses the features of the automated process control system, defines the algorithm for installing critical updates. The main problems in the administration of a critical system have been identified. The paper presents a model for recognizing anomalies in the network traffic of an industrial information system using machine learning methods. The article considers the network intrusion dataset (raw TCP / IP dump data was collected, where the network was subjected to multiple attacks). The main parameters that affect the recognition of abnormal behavior in the system are determined. The basic mathematical models of classification are analyzed, their basic parameters are reviewed and tuned. The mathematical model was trained on the considered (randomly mixed) sample using cross-validation and the response was predicted on the control (test) sample, where the model should determine the anomalous behavior of the system or normal as the output. The main criteria for choosing a mathematical model for the problem to be solved were the number of correctly recognized (accuracy) anomalies, precision and recall of the answers. Based on the study, the optimal algorithm for recognizing anomalies was selected, as well as signs by which this anomaly can be recognized.
Zhang, Zichao, de Amorim, Arthur Azevedo, Jia, Limin, Pasareanu, Corina S..  2020.  Automating Compositional Analysis of Authentication Protocols. 2020 Formal Methods in Computer Aided Design (FMCAD). :113–118.
Modern verifiers for cryptographic protocols can analyze sophisticated designs automatically, but require the entire code of the protocol to operate. Compositional techniques, by contrast, allow us to verify each system component separately, against its own guarantees and assumptions about other components and the environment. Compositionality helps protocol design because it explains how the design can evolve and when it can run safely along other protocols and programs. For example, it might say that it is safe to add some functionality to a server without having to patch the client. Unfortunately, while compositional frameworks for protocol verification do exist, they require non-trivial human effort to identify specifications for the components of the system, thus hindering their adoption. To address these shortcomings, we investigate techniques for automated, compositional analysis of authentication protocols, using automata-learning techniques to synthesize assumptions for protocol components. We report preliminary results on the Needham-Schroeder-Lowe protocol, where our synthesized assumption was capable of lowering verification time while also allowing us to verify protocol variants compositionally.