Visible to the public Biblio

Filters: Author is Davis, Matthew  [Clear All Filters]
Gordon, Kiel, Davis, Matthew, Birnbaum, Zachary, Dolgikh, Andrey.  2018.  ACE: Advanced CIP Evaluator. Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and PrivaCy. :90-101.
Industrial control systems (ICS) are key enabling systems that drive the productivity and efficiency of omnipresent industries such as power, gas, water treatment, transportation, and manufacturing. These systems consist of interconnected components that communicate over industrial networks using industrial protocols such as the Common Industrial Protocol (CIP). CIP is one of the most commonly used network-based process control protocols, and utilizes an object-oriented communication structure for device to device interaction. Due to this object-oriented structure, CIP communication reveals detailed information about the devices, the communication patterns, and the system, providing an in-depth view of the system. The details from this in-depth system perspective can be utilized as part of a system cybersecurity or discovery approach. However, due to the variety of commands, corresponding parameters, and variable layer structure of the CIP network layer, processing this layer is a challenging task. This paper presents a tool, Advanced CIP Evaluator (ACE), which passively processes the CIP communication layer and automatically extracts device, communication, and system information from observed network traffic. ACE was tested and verified using a representative ICS power generation testbed. Since ACE operates passively, without generating any network traffic of its own, system operations are not disturbed. This novel tool provides ICS information, such as networked devices, communication patterns, and system operation, at a depth and breadth that is unique compared with other known tools.
Liao, Q. Vera, Davis, Matthew, Geyer, Werner, Muller, Michael, Shami, N. Sadat.  2016.  What Can You Do?: Studying Social-Agent Orientation and Agent Proactive Interactions with an Agent for Employees Proceedings of the 2016 ACM Conference on Designing Interactive Systems. :264–275.

Personal agent software is now in daily use in personal devices and in some organizational settings. While many advocate an agent sociality design paradigm that incorporates human-like features and social dialogues, it is unclear whether this is a good match for professionals who seek productivity instead of leisurely use. We conducted a 17-day field study of a prototype of a personal AI agent that helps employees find work-related information. Using log data, surveys, and interviews, we found individual differences in the preference for humanized social interactions (social-agent orientation), which led to different user needs and requirements for agent design. We also explored the effect of agent proactive interactions and found that they carried the risk of interruption, especially for users who were generally averse to interruptions at work. Further, we found that user differences in social-agent orientation and aversion to agent proactive interactions can be inferred from behavioral signals. Our results inform research into social agent design, proactive agent interaction, and personalization of AI agents.