Visible to the public Biblio

Filters: Author is Zhang, R.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Zhang, R., Cao, Z., Wu, K..  2020.  Tracing and detection of ICS Anomalies Based on Causality Mutations. 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). :511—517.

The algorithm of causal anomaly detection in industrial control physics is proposed to determine the normal cloud line of industrial control system so as to accurately detect the anomaly. In this paper, The causal modeling algorithm combining Maximum Information Coefficient and Transfer Entropy was used to construct the causal network among nodes in the system. Then, the abnormal nodes and the propagation path of the anomaly are deduced from the structural changes of the causal network before and after the attack. Finally, an anomaly detection algorithm based on hybrid differential cumulative is used to identify the specific anomaly data in the anomaly node. The stability of causality mining algorithm and the validity of locating causality anomalies are verified by using the data of classical chemical process. Experimental results show that the anomaly detection algorithm is better than the comparison algorithm in accuracy, false negative rate and recall rate, and the anomaly location strategy makes the anomaly source traceable.

Lu, B., Qin, Z., Yang, M., Xia, X., Zhang, R., Wang, L..  2018.  Spoofing Attack Detection Using Physical Layer Information in Cross-Technology Communication. 2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :1-2.

Recent advances in Cross-Technology Communication (CTC) enable the coexistence and collaboration among heterogeneous wireless devices operating in the same ISM band (e.g., Wi-Fi, ZigBee, and Bluetooth in 2.4 GHz). However, state-of-the-art CTC schemes are vulnerable to spoofing attacks since there is no practice authentication mechanism yet. This paper proposes a scheme to enable the spoofing attack detection for CTC in heterogeneous wireless networks by using physical layer information. First, we propose a model to detect ZigBee packets and measure the corresponding Received Signal Strength (RSS) on Wi-Fi devices. Then, we design a collaborative mechanism between Wi-Fi and ZigBee devices to detect the spoofing attack. Finally, we implement and evaluate our methods through experiments on commercial off-the- shelf (COTS) Wi-Fi and ZigBee devices. Our results show that it is possible to measure the RSS of ZigBee packets on Wi-Fi device and detect spoofing attack with both a high detection rate and a low false positive rate in heterogeneous wireless networks.

Zhang, R., Yang, G., Wang, Y..  2018.  Propagation Characteristics of Acoustic Emission Signals in Multi Coupling Interface of the Engine. 2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems (ICICM). :254–258.
The engine is a significant and dynamic component of the aircraft. Because of the complicated structure and severe operating environment, the fault detection of the engine has always been the key and difficult issue in the field of reliability. Based on an engine and the acoustic emission technology, we propose a method of identifying fault types and determining different components in the engine by constructing the attenuation coefficient. There are several common faults of engines, and three different types of fault sources are generated experimentally in this work. Then the fault signal of the above fault sources propagating in different engine components are obtained. Finally, the acoustic emission characteristics of the fault signal are extracted and judged by the attenuation coefficient. The work effectively identifies different types of faults and studies the effects of different structural components on the propagation of fault acoustic emission signals, which provides a method for the use of acoustic emission technology to identify the faults types of the engine and to study the propagation characteristics of AE signals on the engine.*
Zheng, L., Xue, Y., Zhang, L., Zhang, R..  2017.  Mutual Authentication Protocol for RFID Based on ECC. 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). 2:320–323.

In this paper, a mutual authentication protocol based on ECC is designed for RFID systems. This protocol is described in detail and the performance of this protocol is analyzed. The results show that the protocol has many advantages, such as mutual authentication, confidentiality, anonymity, availability, forward security, scalability and so on, which can resist camouflage attacks, tracking attacks, denial of service attacks, system internal attack.

Shi, W., Liu, S., Zhang, J., Zhang, R..  2020.  A Location-aware Computation Offloading Policy for MEC-assisted Wireless Mesh Network. 2020 IEEE/CIC International Conference on Communications in China (ICCC Workshops). :53–58.
Mobile edge computing (MEC), an emerging technology, has the characteristics of low latency, mobile energy savings, and context-awareness. As a type of access network, wireless mesh network (WMN) has gained wide attention due to its flexible network architecture, low deployment cost, and self-organization. The combination of MEC and WMN can solve the shortcomings of traditional wireless communication such as storage capacity, privacy, and security. In this paper, we propose a location-aware (LA) algorithm to cognize the location and a location-aware offloading policy (LAOP) algorithm considering the energy consumption and time delay. Simulation results show that the proposed LAOP algorithm can obtain a higher completion rate and lower average processing delay compared with the other two methods.
Zhang, R., Zhu, Q..  2017.  A game-theoretic defense against data poisoning attacks in distributed support vector machines. 2017 IEEE 56th Annual Conference on Decision and Control (CDC). :4582–4587.

With a large number of sensors and control units in networked systems, distributed support vector machines (DSVMs) play a fundamental role in scalable and efficient multi-sensor classification and prediction tasks. However, DSVMs are vulnerable to adversaries who can modify and generate data to deceive the system to misclassification and misprediction. This work aims to design defense strategies for DSVM learner against a potential adversary. We use a game-theoretic framework to capture the conflicting interests between the DSVM learner and the attacker. The Nash equilibrium of the game allows predicting the outcome of learning algorithms in adversarial environments, and enhancing the resilience of the machine learning through dynamic distributed algorithms. We develop a secure and resilient DSVM algorithm with rejection method, and show its resiliency against adversary with numerical experiments.