Visible to the public Biblio

Filters: Author is He, S.  [Clear All Filters]
He, S., Lei, D., Shuang, W., Liu, C., Gu, Z..  2020.  Network Security Analysis of Industrial Control System Based on Attack-Defense Tree. 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS). :651—655.
In order to cope with the network attack of industrial control system, this paper proposes a quantifiable attack-defense tree model. In order to reduce the influence of subjective factors on weight calculation and the probability of attack events, the Fuzzy Analytic Hierarchy Process and the Attack-Defense Tree model are combined. First, the model provides a variety of security attributes for attack and defense leaf nodes. Secondly, combining the characteristics of leaf nodes, a fuzzy consistency matrix is constructed to calculate the security attribute weight of leaf nodes, and the probability of attack and defense leaf nodes. Then, the influence of defense node on attack behavior is analyzed. Finally, the network risk assessment of typical airport oil supply automatic control system has been undertaken as a case study using this attack-defense tree model. The result shows that this model can truly reflect the impact of defense measures on the attack behavior, and provide a reference for the network security scheme.
He, S., Cheng, B., Wang, H., Xiao, X., Cao, Y., Chen, J..  2018.  Data security storage model for fog computing in large-scale IoT application. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :39–44.

With the scale of big data increasing in large-scale IoT application, fog computing is a recent computing paradigm that is extending cloud computing towards the edge of network in the field. There are a large number of storage resources placed on the edge of the network to form a geographical distributed storage system in fog computing system (FCS). It is used to store the big data collected by the fog computing nodes and to reduce the management costs for moving big data to the cloud. However, the storage of fog nodes at the edge of the network faces a direct attack of external threats. In order to improve the security of the storage of fog nodes in FCS, in this paper, we proposed a data security storage model for fog computing (FCDSSM) to realize the integration of storage and security management in large-scale IoT application. We designed a detail of the FCDSSM system architecture, gave a design of the multi-level trusted domain, cooperative working mechanism, data synchronization and key management strategy for the FCDSSM. Experimental results show that the loss of computing and communication performance caused by data security storage in the FCDSSM is within the acceptable range, and the FCDSSM has good scalability. It can be adapted to big data security storage in large-scale IoT application.

He, S., Shu, Y., Cui, X., Wei, C., Chen, J., Shi, Z..  2017.  A Trust Management Based Framework for Fault-Tolerant Barrier Coverage in Sensor Networks. 2017 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.

Barrier coverage has been widely adopted to prevent unauthorized invasion of important areas in sensor networks. As sensors are typically placed outdoors, they are susceptible to getting faulty. Previous works assumed that faulty sensors are easy to recognize, e.g., they may stop functioning or output apparently deviant sensory data. In practice, it is, however, extremely difficult to recognize faulty sensors as well as their invalid output. We, in this paper, propose a novel fault-tolerant intrusion detection algorithm (TrusDet) based on trust management to address this challenging issue. TrusDet comprises of three steps: i) sensor-level detection, ii) sink-level decision by collective voting, and iii) trust management and fault determination. In the Step i) and ii), TrusDet divides the surveillance area into a set of fine- grained subareas and exploits temporal and spatial correlation of sensory output among sensors in different subareas to yield a more accurate and robust performance of barrier coverage. In the Step iii), TrusDet builds a trust management based framework to determine the confidence level of sensors being faulty. We implement TrusDet on HC- SR501 infrared sensors and demonstrate that TrusDet has a desired performance.