Visible to the public Biblio

Filters: Author is Sterner, U.  [Clear All Filters]
Komulainen, A., Nilsson, J., Sterner, U..  2017.  Effects of Topology Information on Routing in Contention-Based Underwater Acoustic Networks. OCEANS 2017 - Aberdeen. :1–7.

Underwater acoustic networks is an enabling technology for a range of applications such as mine countermeasures, intelligence and reconnaissance. Common for these applications is a need for robust information distribution while minimizing energy consumption. In terrestrial wireless networks topology information is often used to enhance the efficiency of routing, in terms of higher capacity and less overhead. In this paper we asses the effects of topology information on routing in underwater acoustic networks. More specifically, the interplay between long propagation delays, contention-based channels access and dissemination of varying degrees of topology information is investigated. The study is based on network simulations of a number of network protocols that make use of varying amounts of topology information. The results indicate that, in the considered scenario, relying on local topology information to reduce retransmissions may have adverse effects on the reliability. The difficult channel conditions and the contention-based channels access methods create a need for an increased amount of diversity, i.e., more retransmissions. In the scenario considered, an opportunistic flooding approach is a better, both in terms of robustness and energy consumption.