Visible to the public Biblio

Filters: Author is Lim, H.  [Clear All Filters]
2021-01-25
Yoon, S., Cho, J.-H., Kim, D. S., Moore, T. J., Free-Nelson, F., Lim, H..  2020.  Attack Graph-Based Moving Target Defense in Software-Defined Networks. IEEE Transactions on Network and Service Management. 17:1653–1668.
Moving target defense (MTD) has emerged as a proactive defense mechanism aiming to thwart a potential attacker. The key underlying idea of MTD is to increase uncertainty and confusion for attackers by changing the attack surface (i.e., system or network configurations) that can invalidate the intelligence collected by the attackers and interrupt attack execution; ultimately leading to attack failure. Recently, the significant advance of software-defined networking (SDN) technology has enabled several complex system operations to be highly flexible and robust; particularly in terms of programmability and controllability with the help of SDN controllers. Accordingly, many security operations have utilized this capability to be optimally deployed in a complex network using the SDN functionalities. In this paper, by leveraging the advanced SDN technology, we developed an attack graph-based MTD technique that shuffles a host's network configurations (e.g., MAC/IP/port addresses) based on its criticality, which is highly exploitable by attackers when the host is on the attack path(s). To this end, we developed a hierarchical attack graph model that provides a network's vulnerability and network topology, which can be utilized for the MTD shuffling decisions in selecting highly exploitable hosts in a given network, and determining the frequency of shuffling the hosts' network configurations. The MTD shuffling with a high priority on more exploitable, critical hosts contributes to providing adaptive, proactive, and affordable defense services aiming to minimize attack success probability with minimum MTD cost. We validated the out performance of the proposed MTD in attack success probability and MTD cost via both simulation and real SDN testbed experiments.
2019-09-09
Narantuya, J., Yoon, S., Lim, H., Cho, J., Kim, D. S., Moore, T., Nelson, F..  2019.  SDN-Based IP Shuffling Moving Target Defense with Multiple SDN Controllers. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks – Supplemental Volume (DSN-S). :15–16.

Conventional SDN-based MTD techniques have been mainly developed with a single SDN controller which exposes a single point of failure as well as raises a scalability issue for large-scale networks in achieving both security and performance. The use of multiple SDN controllers has been proposed to ensure both performance and security of SDN-based MTD systems for large-scale networks; however, the effect of using multiple SDN controllers has not been investigated in the state-of-the-art research. In this paper, we propose the SDN based MTD architecture using multiple SDN controllers and validate their security effect (i.e., attack success probability) by implementing an IP shuffling MTD in a testbed using ONOS SDN controllers.

2018-02-21
Lim, H., Ni, A., Kim, D., Ko, Y. B..  2017.  Named data networking testbed for scientific data. 2017 2nd International Conference on Computer and Communication Systems (ICCCS). :65–69.

Named Data Networking (NDN) is one of the future internet architectures, which is a clean-slate approach. NDN provides intelligent data retrieval using the principles of name-based symmetrical forwarding of Interest/Data packets and innetwork caching. The continually increasing demand for rapid dissemination of large-scale scientific data is driving the use of NDN in data-intensive science experiments. In this paper, we establish an intercontinental NDN testbed. In the testbed, an NDN-based application that targets climate science as an example data intensive science application is designed and implemented, which has differentiated features compared to those of previous studies. We verify experimental justification of using NDN for climate science in the intercontinental network, through performance comparisons between classical delivery techniques and NDN-based climate data delivery.