Visible to the public Biblio

Filters: Author is Huang, Hua  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
Liu, Donglan, Wang, Rui, Zhang, Hao, Ma, Lei, Liu, Xin, Huang, Hua, Chang, Yingxian.  2020.  Research on Data Security Protection Method Based on Big Data Technology. 2020 12th International Conference on Communication Software and Networks (ICCSN). :79—83.
The construction of power Internet of things is an important development direction of power grid enterprises in the future. Big data not only brings economic and social benefits to the power system industry, but also brings many information security problems. Therefore, in the case of accelerating the construction of ubiquitous electric Internet of things, it is urgent to standardize the data security protection in the ubiquitous electric Internet of things environment. By analyzing the characteristics of big data in power system, this paper discusses the security risks faced by big data in power system. Finally, we propose some methods of data security protection based on the defects of big data security in current power system. By building a data security intelligent management and control platform, it can automatically discover and identify the types and levels of data assets, and build a classification and grading information base of dynamic data assets. And through the detection and identification of data labels and data content characteristics, tracking the use of data flow process. So as to realize the monitoring of data security state. By protecting sensitive data against leakage based on the whole life cycle of data, the big data security of power grid informatization can be effectively guaranteed and the safety immunity of power information system can be improved.
Huang, Hua, Zhang, Yi-lai, Zhang, Min.  2019.  Research on Cloud Workflow Engine Supporting Three-Level Isolation and Privacy Protection. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :160—165.

With the development of cloud computing, cloud workflow systems are widely accepted by more and more enterprises and individuals (namely tenants). There exists mass tenant workflow instances running in cloud workflow systems. How to implement the three-level (i.e., data, performance, execution ) isolation and privacy protection among these tenant workflow instances is challenging. To address this issue, this paper presents a novel cloud workflow model supporting multi-tenants with privacy protection. With the presented model, a framework of cloud workflow engine based on the extended jBPM4 is proposed by adopting layered management thought, virtualization technology and sandbox mechanism. By extending the jBPM4 (java Business Process Management) engine, the prototype system of the proposed cloud workflow engine is implemented and applied in the ceramic cloud service platform (denoted as CCSP). The application effect demonstrates that our proposal can be used to implement the three-level isolation and privacy protection between mass various tenant workflow instances in cloud workflow systems.

H
Wang, Lizhi, Xiong, Zhiwei, Huang, Hua, Shi, Guangming, Wu, Feng, Zeng, Wenjun.  2019.  High-Speed Hyperspectral Video Acquisition By Combining Nyquist and Compressive Sampling. IEEE Transactions on Pattern Analysis and Machine Intelligence. 41:857–870.
We propose a novel hybrid imaging system to acquire 4D high-speed hyperspectral (HSHS) videos with high spatial and spectral resolution. The proposed system consists of two branches: one branch performs Nyquist sampling in the temporal dimension while integrating the whole spectrum, resulting in a high-frame-rate panchromatic video; the other branch performs compressive sampling in the spectral dimension with longer exposures, resulting in a low-frame-rate hyperspectral video. Owing to the high light throughput and complementary sampling, these two branches jointly provide reliable measurements for recovering the underlying HSHS video. Moreover, the panchromatic video can be used to learn an over-complete 3D dictionary to represent each band-wise video sparsely, thanks to the inherent structural similarity in the spectral dimension. Based on the joint measurements and the self-adaptive dictionary, we further propose a simultaneous spectral sparse (3S) model to reinforce the structural similarity across different bands and develop an efficient computational reconstruction algorithm to recover the HSHS video. Both simulation and hardware experiments validate the effectiveness of the proposed approach. To the best of our knowledge, this is the first time that hyperspectral videos can be acquired at a frame rate up to 100fps with commodity optical elements and under ordinary indoor illumination.
C
Yang, Li-hua, Huang, Hua.  2019.  A Classification Method of Ancient Ceramics Based on Support Vector Machine in Ceramic Cloud Service Platform. 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :108–112.
To efficiently provide the ancient ceramic composition analysis and testing services, it is necessary to efficiently classify the ancient ceramics in ceramic cloud service platform. In this paper, we get the 8 kinds of major chemical contents of the body and glaze in each sample according to analyze 35 samples. After establishing of the classification model of two samples, the results indicate: as long as choosing SVM algorithm correctly, the classification results of body and glaze samples will be quite ideal, and the support vector machine is a very valuable new method which can process ancient porcelains data.