Visible to the public Biblio

Filters: Author is Pan, Chen  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Xia, Yusheng, Chen, Rongmao, Su, Jinshu, Pan, Chen, Su, Han.  2020.  Hybrid Routing: Towards Resilient Routing in Anonymous Communication Networks. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1—7.

Anonymous communication networks (ACNs) are intended to protect the metadata during communication. As classic ACNs, onion mix-nets are famous for strong anonymity, in which the source defines a static path and wraps the message multi-times with the public keys of nodes on the path, through which the message is relayed to the destination. However, onion mix-nets lacks in resilience when the static on-path mixes fail. Mix failure easily results in message loss, communication failure, and even specific attacks. Therefore, it is desirable to achieve resilient routing in onion mix-nets, providing persistent routing capability even though node failure. The state-of-theart solutions mainly adopt mix groups and thus need to share secret keys among all the group members which may cause single point of failure. To address this problem, in this work we propose a hybrid routing approach, which embeds the onion mix-net with hop-by-hop routing to increase routing resilience. Furthermore, we propose the threshold hybrid routing to achieve better key management and avoid single point of failure. As for experimental evaluations, we conduct quantitative analysis of the resilience and realize a local T-hybrid routing prototype to test performance. The experimental results show that our proposed routing strategy increases routing resilience effectively, at the expense of acceptable latency.

Ye, Guodong, Huang, Xiaoling, Pan, Chen.  2018.  An Efficient Image Encryption Algorithm Based on Three-dimensional Chaotic Map. Proceedings of the 2Nd International Conference on Advances in Image Processing. :78–82.
In this paper, a new image encryption algorithm is presented with one chaotic map and one group of secret keys. Double permutations for pixel positions are designed followed by a function of diffusion to alter gray distribution in the plain-image. In the proposed algorithm, the keystream is produced and dependent on the plain-image. As a result, the method can frustrate the known plaintext attack and chosen plaintext attack. Moreover, diffusion encryption by row-only is applied to the permuted image to save time consumption. Then, the experimental results show that our method can perform high security and is suitable for both gray and color images.