Visible to the public Biblio

Filters: Author is Zhao, Yong  [Clear All Filters]
2020-01-20
Liu, Donglan, Zhang, Hao, Wang, Wenting, Zhao, Yang, Zhao, Xiaohong, Yu, Hao, Lv, Guodong, Zhao, Yong.  2019.  Research on Protection for the Database Security Based on the Cloud of Smart Grid. 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN). :585–589.

As cloud services enter the Internet market, cloud security issues are gradually exposed. In the era of knowledge economy, the unique potential value of big data is being gradually explored. However, the control of data security is facing many challenges. According to the development status and characteristics of database within the cloud environment, this paper preliminary studies on the database security risks faced by the “three-clouds” of State Grid Corporation of China. Based on the mature standardization of information security, this paper deeply studies the database security requirements of cloud environment, and six-step method for cloud database protection is presented, which plays an important role in promoting development of security work for the cloud database. Four key technologies of cloud database security protection are introduced, including database firewall technology, sensitive data encryption, production data desensitization, and database security audit technology. It is helpful to the technology popularization of the grade protection in the security of the cloud database, and plays a great role in the construction of the security of the state grid.

2020-08-07
Liu, Donglan, Zhang, Hao, Yu, Hao, Liu, Xin, Zhao, Yong, Lv, Guodong.  2019.  Research and Application of APT Attack Defense and Detection Technology Based on Big Data Technology. 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC). :1—4.
In order to excavate security threats in power grid by making full use of heterogeneous data sources in power information system, this paper proposes APT (Advanced Persistent Threat) attack detection sandbox technology and active defense system based on big data analysis technology. First, the file is restored from the mirror traffic and executed statically. Then, sandbox execution was carried out to introduce analysis samples into controllable virtual environment, and dynamic analysis and operation samples were conducted. Through analyzing the dynamic processing process of samples, various known and unknown malicious code, APT attacks, high-risk Trojan horses and other network security risks were comprehensively detected. Finally, the threat assessment of malicious samples is carried out and visualized through the big data platform. The results show that the method proposed in this paper can effectively warn of unknown threats, improve the security level of system data, have a certain active defense ability. And it can effectively improve the speed and accuracy of power information system security situation prediction.