Visible to the public Biblio

Filters: Author is Sun, Xiaoyan  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
W
Appana, Pranavi, Sun, Xiaoyan, Cheng, Yuan.  2019.  What To Do First: Ranking The Mission Impact Graph for Effective Mission Assurance. 2019 International Conference on Computing, Networking and Communications (ICNC). :567–571.

Network attacks continue to pose threats to missions in cyber space. To prevent critical missions from getting impacted or minimize the possibility of mission impact, active cyber defense is very important. Mission impact graph is a graphical model that enables mission impact assessment and shows how missions can be possibly impacted by cyber attacks. Although the mission impact graph provides valuable information, it is still very difficult for human analysts to comprehend due to its size and complexity. Especially when given limited resources, human analysts cannot easily decide which security measures to take first with respect to mission assurance. Therefore, this paper proposes to apply a ranking algorithm towards the mission impact graph so that the huge amount of information can be prioritized. The actionable conditions that can be managed by security admins are ranked with numeric values. The rank enables efficient utilization of limited resources and provides guidance for taking security countermeasures.

Zhang, Yaqin, Ma, Duohe, Sun, Xiaoyan, Chen, Kai, Liu, Feng.  2020.  WGT: Thwarting Web Attacks Through Web Gene Tree-based Moving Target Defense. 2020 IEEE International Conference on Web Services (ICWS). :364–371.
Moving target defense (MTD) suggests a game-changing way of enhancing web security by increasing uncertainty and complexity for attackers. A good number of web MTD techniques have been investigated to counter various types of web attacks. However, in most MTD techniques, only fixed attributes of the attack surface are shifted, leaving the rest exploitable by the attackers. Currently, there are few mechanisms to support the whole attack surface movement and solve the partial coverage problem, where only a fraction of the possible attributes shift in the whole attack surface. To address this issue, this paper proposes a Web Gene Tree (WGT) based MTD mechanism. The key point is to extract all potential exploitable key attributes related to vulnerabilities as web genes, and mutate them using various MTD techniques to withstand various attacks. Experimental results indicate that, by randomly shifting web genes and diversely inserting deceptive ones, the proposed WGT mechanism outperforms other existing schemes and can significantly improve the security of web applications.
T
Sun, Xiaoyan, Dai, Jun, Liu, Peng, Singhal, Anoop, Yen, John.  2016.  Towards probabilistic identification of zero-day attack paths. 2016 IEEE Conference on Communications and Network Security (CNS). :64–72.
Zero-day attacks continue to challenge the enterprise network security defense. A zero-day attack path is formed when a multi-step attack contains one or more zero-day exploits. Detecting zero-day attack paths in time could enable early disclosure of zero-day threats. In this paper, we propose a probabilistic approach to identify zero-day attack paths and implement a prototype system named ZePro. An object instance graph is first built from system calls to capture the intrusion propagation. To further reveal the zero-day attack paths hiding in the instance graph, our system constructs an instance-graph-based Bayesian network. By leveraging intrusion evidence, the Bayesian network can quantitatively compute the probabilities of object instances being infected. The object instances with high infection probabilities reveal themselves and form the zero-day attack paths. The experiment results show that our system can effectively identify zero-day attack paths.