Visible to the public Biblio

Filters: Author is Ma, Lei  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Hou, Xiaolu, Breier, Jakub, Jap, Dirmanto, Ma, Lei, Bhasin, Shivam, Liu, Yang.  2020.  Security Evaluation of Deep Neural Network Resistance Against Laser Fault Injection. 2020 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). :1–6.
Deep learning is becoming a basis of decision making systems in many application domains, such as autonomous vehicles, health systems, etc., where the risk of misclassification can lead to serious consequences. It is necessary to know to which extent are Deep Neural Networks (DNNs) robust against various types of adversarial conditions. In this paper, we experimentally evaluate DNNs implemented in embedded device by using laser fault injection, a physical attack technique that is mostly used in security and reliability communities to test robustness of various systems. We show practical results on four activation functions, ReLu, softmax, sigmoid, and tanh. Our results point out the misclassification possibilities for DNNs achieved by injecting faults into the hidden layers of the network. We evaluate DNNs by using several different attack strategies to show which are the most efficient in terms of misclassification success rates. Outcomes of this work should be taken into account when deploying devices running DNNs in environments where malicious attacker could tamper with the environmental parameters that would bring the device into unstable conditions. resulting into faults.
R
Liu, Donglan, Liu, Xin, Zhang, Hao, Yu, Hao, Wang, Wenting, Ma, Lei, Chen, Jianfei, Li, Dong.  2019.  Research on End-to-End Security Authentication Protocol of NB-IoT for Smart Grid Based on Physical Unclonable Function. 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN). :239–244.
As a national strategic hot spot, the Internet of Things (IoT) has shown its vigor and vitality. With the development of IoT, its application in power grid is more and more extensive. As an advanced technology for information sensing and transmission, IoT has been applied extensively in power generation, transmission, transformation, distribution, utilization and other processes, and will develop with broad prospect in smart grid. Narrow Band Internet of Things (NB-IoT) is of broad application prospects in production management, life-cycle asset management and smart power utilization of smart grid. Its characteristics and security demands of application domain present a challenge for the security of electric power business. However, current protocols either need dual authentication and key agreements, or have poor compatibility with current network architecture. In order to improve the high security of power network data transmission, an end-to-end security authentication protocol of NB-IoT for smart grid based on physical unclonable function and state secret algorithm SM3 is proposed in this paper. A self-controllable NB-IoT application layer security architecture was designed by introducing the domestic cryptographic algorithm, extending the existing key derivation structure of LTE, and combining the physical unclonable function to ensure the generation of encryption keys between NB-IoT terminals and power grid business platforms. The protocol of this paper realizes secure data transmission and bidirectional identity authentication between IoT devices and terminals. It is of low communication costs, lightweight and flexible key update. In addition, the protocol also supports terminal authentication during key agreement, which furtherly enhances the security of business systems in smart grid.
Liu, Donglan, Wang, Rui, Zhang, Hao, Ma, Lei, Liu, Xin, Huang, Hua, Chang, Yingxian.  2020.  Research on Data Security Protection Method Based on Big Data Technology. 2020 12th International Conference on Communication Software and Networks (ICCSN). :79—83.
The construction of power Internet of things is an important development direction of power grid enterprises in the future. Big data not only brings economic and social benefits to the power system industry, but also brings many information security problems. Therefore, in the case of accelerating the construction of ubiquitous electric Internet of things, it is urgent to standardize the data security protection in the ubiquitous electric Internet of things environment. By analyzing the characteristics of big data in power system, this paper discusses the security risks faced by big data in power system. Finally, we propose some methods of data security protection based on the defects of big data security in current power system. By building a data security intelligent management and control platform, it can automatically discover and identify the types and levels of data assets, and build a classification and grading information base of dynamic data assets. And through the detection and identification of data labels and data content characteristics, tracking the use of data flow process. So as to realize the monitoring of data security state. By protecting sensitive data against leakage based on the whole life cycle of data, the big data security of power grid informatization can be effectively guaranteed and the safety immunity of power information system can be improved.