Visible to the public Biblio

Filters: Author is Karimi, Naghmeh  [Clear All Filters]
2022-04-13
Hasan Anik, Toufiq, Danger, Jean-Luc, Diankha, Omar, Ebrahimabadi, Mohammad, Frisch, Christoph, Guilley, Sylvain, Karimi, Naghmeh, Pehl, Michael, Takarabt, Sofiane.  2021.  Testing and Reliability Enhancement of Security Primitives. 2021 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). :1–8.
The test of security primitives is particularly strategic as any bias coming from the implementation or environment can wreck havoc on the security it is intended to provide. This paper presents how some security properties are tested on leading primitives: True Random Number Generation (TRNG), Physically Unclonable Function (PUF), cryptographic primitives and Digital Sensor (DS). The test of TRNG and PUF to ensure a high level of security is mainly about the entropy assessment, which requires specific statistical tests. The security against side-channel analysis (SCA) of cryptographic primitives, like the substitution box in symmetric cryptography, is generally ensured by masking. But the hardware implementation of masking can be damaged by glitches, which create leakages on sensitive variables. A test method is to search for nets of the cryptographic netlist, which are vulnerable to glitches. The DS is an efficient primitive to detect disturbances and rise alarms in case of fault injection attack (FIA). The dimensioning of this primitive requires a precise test to take into account the environment variations including the aging.
2021-12-20
Ebrahimabadi, Mohammad, Younis, Mohamed, Lalouani, Wassila, Karimi, Naghmeh.  2021.  A Novel Modeling-Attack Resilient Arbiter-PUF Design. 2021 34th International Conference on VLSI Design and 2021 20th International Conference on Embedded Systems (VLSID). :123–128.
Physically Unclonable Functions (PUFs) have been considered as promising lightweight primitives for random number generation and device authentication. Thanks to the imperfections occurring during the fabrication process of integrated circuits, each PUF generates a unique signature which can be used for chip identification. Although supposed to be unclonable, PUFs have been shown to be vulnerable to modeling attacks where a set of collected challenge response pairs are used for training a machine learning model to predict the PUF response to unseen challenges. Challenge obfuscation has been proposed to tackle the modeling attacks in recent years. However, knowing the obfuscation algorithm can help the adversary to model the PUF. This paper proposes a modeling-resilient arbiter-PUF architecture that benefits from the randomness provided by PUFs in concealing the obfuscation scheme. The experimental results confirm the effectiveness of the proposed structure in countering PUF modeling attacks.
2020-07-30
Shey, James, Karimi, Naghmeh, Robucci, Ryan, Patel, Chintan.  2018.  Design-Based Fingerprinting Using Side-Channel Power Analysis for Protection Against IC Piracy. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :614—619.

Intellectual property (IP) and integrated circuit (IC) piracy are of increasing concern to IP/IC providers because of the globalization of IC design flow and supply chains. Such globalization is driven by the cost associated with the design, fabrication, and testing of integrated circuits and allows avenues for piracy. To protect the designs against IC piracy, we propose a fingerprinting scheme based on side-channel power analysis and machine learning methods. The proposed method distinguishes the ICs which realize a modified netlist, yet same functionality. Our method doesn't imply any hardware overhead. We specifically focus on the ability to detect minimal design variations, as quantified by the number of logic gates changed. Accuracy of the proposed scheme is greater than 96 percent, and typically 99 percent in detecting one or more gate-level netlist changes. Additionally, the effect of temperature has been investigated as part of this work. Results depict 95.4 percent accuracy in detecting the exact number of gate changes when data and classifier use the same temperature, while training with different temperatures results in 33.6 percent accuracy. This shows the effectiveness of building temperature-dependent classifiers from simulations at known operating temperatures.

2020-03-12
Salmani, Hassan, Hoque, Tamzidul, Bhunia, Swarup, Yasin, Muhammad, Rajendran, Jeyavijayan JV, Karimi, Naghmeh.  2019.  Special Session: Countering IP Security Threats in Supply Chain. 2019 IEEE 37th VLSI Test Symposium (VTS). :1–9.

The continuing decrease in feature size of integrated circuits, and the increase of the complexity and cost of design and fabrication has led to outsourcing the design and fabrication of integrated circuits to third parties across the globe, and in turn has introduced several security vulnerabilities. The adversaries in the supply chain can pirate integrated circuits, overproduce these circuits, perform reverse engineering, and/or insert hardware Trojans in these circuits. Developing countermeasures against such security threats is highly crucial. Accordingly, this paper first develops a learning-based trust verification framework to detect hardware Trojans. To tackle Trojan insertion, IP piracy and overproduction, logic locking schemes and in particular stripped functionality logic locking is discussed and its resiliency against the state-of-the-art attacks is investigated.