Visible to the public Biblio

Filters: Author is Song, H.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Li, T., Ma, J., Pei, Q., Song, H., Shen, Y., Sun, C..  2019.  DAPV: Diagnosing Anomalies in MANETs Routing With Provenance and Verification. IEEE Access. 7:35302–35316.
Routing security plays an important role in the mobile ad hoc networks (MANETs). Despite many attempts to improve its security, the routing mechanism of MANETs remains vulnerable to attacks. Unlike most existing solutions that prevent the specific problems, our approach tends to detect the misbehavior and identify the anomalous nodes in MANETs automatically. The existing approaches offer support for detecting attacks or debugging in different routing phases, but many of them cannot answer the absence of an event. Besides, without considering the privacy of the nodes, these methods depend on the central control program or a third party to supervise the whole network. In this paper, we present a system called DAPV that can find single or collaborative malicious nodes and the paralyzed nodes which behave abnormally. DAPV can detect both direct and indirect attacks launched during the routing phase. To detect malicious or abnormal nodes, DAPV relies on two main techniques. First, the provenance tracking enables the hosts to deduce the expected log information of the peers with the known log entries. Second, the privacy-preserving verification uses Merkle Hash Tree to verify the logs without revealing any privacy of the nodes. We demonstrate the effectiveness of our approach by applying DAPV to three scenarios: 1) detecting injected malicious intermediated routers which commit active and passive attacks in MANETs; 2) resisting the collaborative black-hole attack of the AODV protocol, and; 3) detecting paralyzed routers in university campus networks. Our experimental results show that our approach can detect the malicious and paralyzed nodes, and the overhead of DAPV is moderate.
E
Wang, N., Song, H., Luo, T., Sun, J., Li, J..  2020.  Enhanced p-Sensitive k-Anonymity Models for Achieving Better Privacy. 2020 IEEE/CIC International Conference on Communications in China (ICCC). :148—153.

To our best knowledge, the p-sensitive k-anonymity model is a sophisticated model to resist linking attacks and homogeneous attacks in data publishing. However, if the distribution of sensitive values is skew, the model is difficult to defend against skew attacks and even faces sensitive attacks. In practice, the privacy requirements of different sensitive values are not always identical. The “one size fits all” unified privacy protection level may cause unnecessary information loss. To address these problems, the paper quantifies privacy requirements with the concept of IDF and concerns more about sensitive groups. Two enhanced anonymous models with personalized protection characteristic, that is, (p,αisg) -sensitive k-anonymity model and (pi,αisg)-sensitive k-anonymity model, are then proposed to resist skew attacks and sensitive attacks. Furthermore, two clustering algorithms with global search and local search are designed to implement our models. Experimental results show that the two enhanced models have outstanding advantages in better privacy at the expense of a little data utility.