Visible to the public Biblio

Filters: Author is Dong, C.  [Clear All Filters]
2020-11-23
Dong, C., Liu, Y., Zhang, Y., Shi, P., Shao, X., Ma, C..  2018.  Abnormal Bus Data Detection of Intelligent and Connected Vehicle Based on Neural Network. 2018 IEEE International Conference on Computational Science and Engineering (CSE). :171–176.
In the paper, our research of abnormal bus data analysis of intelligent and connected vehicle aims to detect the abnormal data rapidly and accurately generated by the hackers who send malicious commands to attack vehicles through three patterns, including remote non-contact, short-range non-contact and contact. The research routine is as follows: Take the bus data of 10 different brands of intelligent and connected vehicles through the real vehicle experiments as the research foundation, set up the optimized neural network, collect 1000 sets of the normal bus data of 15 kinds of driving scenarios and the other 300 groups covering the abnormal bus data generated by attacking the three systems which are most common in the intelligent and connected vehicles as the training set. In the end after repeated amendments, with 0.5 seconds per detection, the intrusion detection system has been attained in which for the controlling system the abnormal bus data is detected at the accuracy rate of 96% and the normal data is detected at the accuracy rate of 90%, for the body system the abnormal one is 87% and the normal one is 80%, for the entertainment system the abnormal one is 80% and the normal one is 65%.
2021-04-27
Song, X., Dong, C., Yuan, D., Xu, Q., Zhao, M..  2020.  Forward Private Searchable Symmetric Encryption with Optimized I/O Efficiency. IEEE Transactions on Dependable and Secure Computing. 17:912–927.
Recently, several practical attacks raised serious concerns over the security of searchable encryption. The attacks have brought emphasis on forward privacy, which is the key concept behind solutions to the adaptive leakage-exploiting attacks, and will very likely to become a must-have property of all new searchable encryption schemes. For a long time, forward privacy implies inefficiency and thus most existing searchable encryption schemes do not support it. Very recently, Bost (CCS 2016) showed that forward privacy can be obtained without inducing a large communication overhead. However, Bost's scheme is constructed with a relatively inefficient public key cryptographic primitive, and has poor I/O performance. Both of the deficiencies significantly hinder the practical efficiency of the scheme, and prevent it from scaling to large data settings. To address the problems, we first present FAST, which achieves forward privacy and the same communication efficiency as Bost's scheme, but uses only symmetric cryptographic primitives. We then present FASTIO, which retains all good properties of FAST, and further improves I/O efficiency. We implemented the two schemes and compared their performance with Bost's scheme. The experiment results show that both our schemes are highly efficient.