Visible to the public Biblio

Filters: Author is Fan, Y.  [Clear All Filters]
Wang, W., Zhang, X., Dong, L., Fan, Y., Diao, X., Xu, T..  2020.  Network Attack Detection based on Domain Attack Behavior Analysis. 2020 13th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). :962—965.

Network security has become an important issue in our work and life. Hackers' attack mode has been upgraded from normal attack to APT( Advanced Persistent Threat, APT) attack. The key of APT attack chain is the penetration and intrusion of active directory, which can not be completely detected via the traditional IDS and antivirus software. Further more, lack of security protection of existing solutions for domain control aggravates this problem. Although researchers have proposed methods for domain attack detection, many of them have not yet been converted into effective market-oriented products. In this paper, we analyzes the common domain intrusion methods, various domain related attack behavior characteristics were extracted from ATT&CK matrix (Advanced tactics, techniques, and common knowledge) for analysis and simulation test. Based on analyzing the log file generated by the attack, the domain attack detection rules are established and input into the analysis engine. Finally, the available domain intrusion detection system is designed and implemented. Experimental results show that the network attack detection method based on the analysis of domain attack behavior can analyze the log file in real time and effectively detect the malicious intrusion behavior of hackers , which could facilitate managers find and eliminate network security threats immediately.

Ge, X., Pan, Y., Fan, Y., Fang, C..  2019.  AMDroid: Android Malware Detection Using Function Call Graphs. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :71—77.

With the rapid development of the mobile Internet, Android has been the most popular mobile operating system. Due to the open nature of Android, c countless malicious applications are hidden in a large number of benign applications, which pose great threats to users. Most previous malware detection approaches mainly rely on features such as permissions, API calls, and opcode sequences. However, these approaches fail to capture structural semantics of applications. In this paper, we propose AMDroid that leverages function call graphs (FCGs) representing the behaviors of applications and applies graph kernels to automatically learn the structural semantics of applications from FCGs. We evaluate AMDroid on the Genome Project, and the experimental results show that AMDroid is effective to detect Android malware with 97.49% detection accuracy.

Huang, Y., Jing, M., Tang, H., Fan, Y., Xue, X., Zeng, X..  2019.  Real-Time Arbitrary Style Transfer with Convolution Neural Network. 2019 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA). :65—66.

Style transfer is a research hotspot in computer vision. Up to now, it is still a challenge although many researches have been conducted on it for high quality style transfer. In this work, we propose an algorithm named ASTCNN which is a real-time Arbitrary Style Transfer Convolution Neural Network. The ASTCNN consists of two independent encoders and a decoder. The encoders respectively extract style and content features from style and content and the decoder generates the style transferred image images. Experimental results show that ASTCNN achieves higher quality output image than the state-of-the-art style transfer algorithms and the floating point computation of ASTCNN is 23.3% less than theirs.