Visible to the public Biblio

Filters: Author is Jiang, Frank  [Clear All Filters]
Conference Paper
Dahiya, Rohan, Jiang, Frank, Doss, Robin Ram.  2020.  A Feedback-Driven Lightweight Reputation Scheme for IoV. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :1060–1068.
Most applications of Internet of Vehicles (IoVs) rely on collaboration between nodes. Therefore, false information flow in-between these nodes poses the challenging trust issue in rapidly moving IoV nodes. To resolve this issue, a number of mechanisms have been proposed in the literature for the detection of false information and establishment of trust in IoVs, most of which employ reputation scores as one of the important factors. However, it is critical to have a robust and consistent scheme that is suitable to aggregate a reputation score for each node based on the accuracy of the shared information. Such a mechanism has therefore been proposed in this paper. The proposed system utilises the results of any false message detection method to generate and share feedback in the network, this feedback is then collected and filtered to remove potentially malicious feedback in order to produce a dynamic reputation score for each node. The reputation system has been experimentally validated and proved to have high accuracy in the detection of malicious nodes sending false information and is robust or negligibly affected in the presence of spurious feedback.
Song, Yangxu, Jiang, Frank, Ali Shah, Syed Wajid, Doss, Robin.  2022.  A New Zero-Trust Aided Smart Key Authentication Scheme in IoV. 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops). :630–636.
With the development of 5G networking technology on the Internet of Vehicle (IoV), there are new opportunities for numerous cyber-attacks, such as in-vehicle attacks like hijacking occurrences and data theft. While numerous attempts have been made to protect against the potential attacks, there are still many unsolved problems such as developing a fine-grained access control system. This is reflected by the granularity of security as well as the related data that are hosted on these platforms. Among the most notable trends is the increased usage of smart devices, IoV, cloud services, emerging technologies aim at accessing, storing and processing data. Most popular authentication protocols rely on knowledge-factor for authentication that is infamously known to be vulnerable to subversions. Recently, the zero-trust framework has drawn huge attention; there is an urgent need to develop further the existing Continuous Authentication (CA) technique to achieve the zero-trustiness framework. In this paper, firstly, we develop the static authentication process and propose a secured protocol to generate the smart key for user to unlock the vehicle. Then, we proposed a novel and secure continuous authentication system for IoVs. We present the proof-of-concept of our CA scheme by building a prototype that leverages the commodity fingerprint sensors, NFC, and smartphone. Our evaluations in real-world settings demonstrate the appropriateness of CA scheme and security analysis of our proposed protocol for digital key suggests its enhanced security against the known attack-vector.