Visible to the public Biblio

Filters: Author is Obaidat, M. S.  [Clear All Filters]
Meshram, C., Obaidat, M. S., Meshram, A..  2020.  New Efficient QERPKC based on Partial Discrete Logarithm Problem. 2020 International Conference on Computer, Information and Telecommunication Systems (CITS). :1–5.
In this study, our aim is to extend the scope for public key cryptography. We offered a new efficient public key encryption scheme using partial discrete logarithm problem (PDLP). It is known as the Quadratic Exponentiation Randomized Public Key Cryptosystem (QERPKC). Security of the presented scheme is based on the hardness of PDLP. We reflect the safety in contrast to trick of certain elements in the offered structure and demonstrated the prospect of creating an extra safety structure. The presented new efficient QERPKC structure is appropriate for low-bandwidth communication, low-storage and low-computation environments.
Gupta, D. S., Islam, S. H., Obaidat, M. S..  2019.  A Secure Identity-based Deniable Authentication Protocol for MANETs. 2019 International Conference on Computer, Information and Telecommunication Systems (CITS). :1–5.
A deniable authentication (DA) protocol plays a vital role to provide security and privacy of the mobile nodes in a mobile ad hoc network (MANET). In recent years, a number of similar works have been proposed, but most of them experience heavy computational and communication overhead. Further, most of these protocols are not secure against different attacks. To address these concerns, we devised an identity-based deniable authentication (IBDA) protocol with adequate security and efficiency. The proposed IBDA protocol is mainly designed for MANETs, where the mobile devices are resource-limited. The proposed IBDA protocol used the elliptic curve cryptography (ECC) and identity-based cryptosystem (IBC). The security of our IBDA protocol depends on the elliptic curve discrete logarithm (ECDL) problem and bilinear Diffie-Hellman (BDH) problem.
Sun, H., Luo, H., Wu, T. Y., Obaidat, M. S..  2015.  A PSNR-Controllable Data Hiding Algorithm Based on LSBs Substitution. 2015 IEEE Global Communications Conference (GLOBECOM). :1–7.

There are more and more systems using mobile devices to perform sensing tasks, but these increase the risk of leakage of personal privacy and data. Data hiding is one of the important ways for information security. Even though many data hiding algorithms have worked on providing more hiding capacity or higher PSNR, there are few algorithms that can control PSNR effectively while ensuring hiding capacity. In this paper, with controllable PSNR based on LSBs substitution- PSNR-Controllable Data Hiding (PCDH), we first propose a novel encoding plan for data hiding. In PCDH, we use the remainder algorithm to calculate the hidden information, and hide the secret information in the last x LSBs of every pixel. Theoretical proof shows that this method can control the variation of stego image from cover image, and control PSNR by adjusting parameters in the remainder calculation. Then, we design the encoding and decoding algorithms with low computation complexity. Experimental results show that PCDH can control the PSNR in a given range while ensuring high hiding capacity. In addition, it can resist well some steganalysis. Compared to other algorithms, PCDH achieves better tradeoff among PSNR, hiding capacity, and computation complexity.