Visible to the public Biblio

Filters: Author is Zhou, Y.  [Clear All Filters]
2015
Wang, J., Zhou, Y..  2015.  Multi-objective dynamic unit commitment optimization for energy-saving and emission reduction with wind power. 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT). :2074–2078.

As a clean energy, wind power is massively utilized in net recent years, which significantly reduced the pollution emission created from unit. This article referred to the concept of energy-saving and emission reducing; built a multiple objective function with represent of the emission of CO2& SO2, the coal-fired from units and the lowest unit fees of commitment; Proposed a algorithm to improving NSGA-D (Non-dominated Sorting Genetic Algorithm-II) for the dynamic characteristics, consider of some constraint conditions such as the shortest operation and fault time and climbing etc.; Optimized and commitment discrete magnitude and Load distribution continuous quantity with the double-optimization strategy; Introduced the fuzzy satisfaction-maximizing method to reaching a decision for Pareto solution and also nested into each dynamic solution; Through simulation for 10 units of wind power, the result show that this method is an effective way to optimize the Multi-objective unit commitment modeling in wind power integrated system with Mixed-integer variable.

2018
Wang, S., Zhou, Y., Guo, R., Du, J., Du, J..  2018.  A Novel Route Randomization Approach for Moving Target Defense. 2018 IEEE 18th International Conference on Communication Technology (ICCT). :11–15.
Route randomization is an important research focus for moving target defense which seeks to proactively and dynamically change the forwarding routes in the network. In this paper, the difficulties of implementing route randomization in traditional networks are analyzed. To solve these difficulties and achieve effective route randomization, a novel route randomization approach is proposed, which is implemented by adding a mapping layer between routers' physical interfaces and their corresponding logical addresses. The design ideas and the details of proposed approach are presented. The effectiveness and performance of proposed approach are verified and evaluated by corresponding experiments.
Zhou, Y., Shi, J., Zhang, J., Chi, N..  2018.  Spectral Scrambling for High-security PAM-8 Underwater Visible Light Communication System. 2018 Asia Communications and Photonics Conference (ACP). :1–3.
We propose a spectral scrambling scheme to enhance physical layer security for an underwater VLC system which also simplifies the real-value signal generation procedure. A 1.08-Gb/s PAM-8 encrypted data over 1.2m transmission is experimentally demonstrated.
2019
Zhou, Y., Zeng, Z..  2019.  Info-Retrieval with Relevance Feedback using Hybrid Learning Scheme for RS Image. 2019 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). :135—138.

Relevance feedback can be considered as a learning problem. It has been extensively used to improve the performance of retrieval multimedia information. In this paper, after the relevance feedback upon content-based image retrieval (CBIR) discussed, a hybrid learning scheme on multi-target retrieval (MTR) with relevance feedback was proposed. Suppose the symbolic image database (SID) of object-level with combined image metadata and feature model was constructed. During the interactive query for remote sensing image, we calculate the similarity metric so as to get the relevant image sets from the image library. For the purpose of further improvement of the precision of image retrieval, a hybrid learning scheme parameter also need to be chosen. As a result, the idea of our hybrid learning scheme contains an exception maximization algorithm (EMA) used for retrieving the most relevant images from SID and an algorithm called supported vector machine (SVM) with relevance feedback used for learning the feedback information substantially. Experimental results show that our hybrid learning scheme with relevance feedback on MTR can improve the performance and accuracy compared the basic algorithms.

2020
Li, Y., Zhou, Y., Hu, K., Sun, N., Ke, K..  2020.  A Security Situation Prediction Method Based on Improved Deep Belief Network. 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT. :594–598.
With the rapid development of smart grids and the continuous deepening of informatization, while realizing remote telemetry and remote control of massive data-based grid operation, electricity information network security problems have become more serious and prominent. A method for electricity information network security situation prediction method based on improved deep belief network is proposed in this paper. Firstly, the affinity propagation clustering algorithm is used to determine the depth of the deep belief network and the number of hidden layer nodes based on sample parameters. Secondly, continuously adjust the scaling factor and crossover probability in the differential evolution algorithm according to the population similarity. Finally, a chaotic search method is used to perform a second search for the best individuals and similarity centers of each generation of the population. Simulation experiments show that the proposed algorithm not only enhances the generalization ability of electricity information network security situation prediction, but also has higher prediction accuracy.
Yu, Z., Fang, X., Zhou, Y., Xiao, L., Zhang, L..  2020.  Chaotic Constellation Scrambling Method for Security-Enhanced CO-OFDM/OQAM Systems. 2020 12th International Conference on Communication Software and Networks (ICCSN). :192–195.
With the deep research on coherent optical OFDM offset quadrature amplitude modulation OFDM/OQAM in these years, and the communication system exposed to potential threat from various capable attackers, which prompt people lay emphasis on encryption methods for transmission. Therefore, in this paper, we systematically discuss an encryption project with the main purpose of improving security in coherent optical OFDM/OQAM (CO-OFDM/OQAM) system, and the scheme applied the chaotic constellation scrambling (CCS) which founded on chaotic cross mapping to encrypt transmitted information. Besides, we also systematically discuss the basic principle of the encryption scheme for CO-OFDM/OQAM system. According to numerous studies and analysis on experiment data with caution, such as the performance of entropy, bit error rate (BER). It's conforms that the security of CO-OFDM/OQAM system have been enhanced.