Visible to the public Biblio

Filters: Author is Lu, X.  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Z
Zheng, P., Chen, B., Lu, X., Zhou, X..  2017.  Privacy-utility trade-off for smart meter data considering tracing household power usage. 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :939–943.

As the key component of the smart grid, smart meters fill in the gap between electrical utilities and household users. Todays smart meters are capable of collecting household power information in real-time, providing precise power dispatching control services for electrical utilities and informing real-time power price for users, which significantly improve the user experiences. However, the use of data also brings a concern about privacy leakage and the trade-off between data usability and user privacy becomes an vital problem. Existing works propose privacy-utility trade-off frameworks against statistical inference attack. However, these algorithms are basing on distorted data, and will produce cumulative errors when tracing household power usage and lead to false power state estimation, mislead dispatching control, and become an obstacle for practical application. Furthermore, previous works consider power usage as discrete variables in their optimization problems while realistic smart meter data is continuous variable. In this paper, we propose a mechanism to estimate the trade-off between utility and privacy on a continuous time-series distorted dataset, where we extend previous optimization problems to continuous variables version. Experiments results on smart meter dataset reveal that the proposed mechanism is able to prevent inference to sensitive appliances, preserve insensitive appliances, as well as permit electrical utilities to trace household power usage periodically efficiently.

S
Salem, A., Liao, X., Shen, Y., Lu, X..  2017.  Provoking the Adversary by Dual Detection Techniques: A Game Theoretical Framework. 2017 International Conference on Networking and Network Applications (NaNA). :326–329.

Establishing a secret and reliable wireless communication is a challenging task that is of paramount importance. In this paper, we investigate the physical layer security of a legitimate transmission link between a user that assists an Intrusion Detection System (IDS) in detecting eavesdropping and jamming attacks in the presence of an adversary that is capable of conducting an eavesdropping or a jamming attack. The user is being faced by a challenge of whether to transmit, thus becoming vulnerable to an eavesdropping or a jamming attack, or to keep silent and consequently his/her transmission will be delayed. The adversary is also facing a challenge of whether to conduct an eavesdropping or a jamming attack that will not get him/her to be detected. We model the interactions between the user and the adversary as a two-state stochastic game. Explicit solutions characterize some properties while highlighting some interesting strategies that are being embraced by the user and the adversary. Results show that our proposed system outperform current systems in terms of communication secrecy.

Q
Qiu, J., Lu, X., Lin, J..  2019.  Optimal Selection of Cryptographic Algorithms in Blockchain Based on Fuzzy Analytic Hierarchy Process. 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS). :208–212.
As a collection of innovative technologies, blockchain has solved the problem of reliable transmission and exchange of information on untrusted networks. The underlying implementation is the basis for the reliability of blockchain, which consists of various cryptographic algorithms for the use of identity authentication and privacy protection of distributed ledgers. The cryptographic algorithm plays a vital role in the blockchain, which guarantees the confidentiality, integrity, verifiability and non-repudiation of the blockchain. In order to get the most suitable cryptographic algorithm for the blockchain system, this paper proposed a method using Fuzzy Analytic Hierarchy Process (FAHP) to evaluate and score the comprehensive performance of the three types of cryptographic algorithms applied in the blockchain, including symmetric cryptographic algorithms, asymmetric cryptographic algorithms and hash algorithms. This paper weighs the performance differences of cryptographic algorithms considering the aspects of security, operational efficiency, language and hardware support and resource consumption. Finally, three cryptographic algorithms are selected that are considered to be the most suitable ones for block-chain systems, namely ECDSA, sha256 and AES. This result is also consistent with the most commonly used cryptographic algorithms in the current blockchain development direction. Therefore, the reliability and practicability of the algorithm evaluation pro-posed in this paper has been proved.
L
Lu, X., Wan, X., Xiao, L., Tang, Y., Zhuang, W..  2018.  Learning-Based Rogue Edge Detection in VANETs with Ambient Radio Signals. 2018 IEEE International Conference on Communications (ICC). :1-6.
Edge computing for mobile devices in vehicular ad hoc networks (VANETs) has to address rogue edge attacks, in which a rogue edge node claims to be the serving edge in the vehicle to steal user secrets and help launch other attacks such as man-in-the-middle attacks. Rogue edge detection in VANETs is more challenging than the spoofing detection in indoor wireless networks due to the high mobility of onboard units (OBUs) and the large-scale network infrastructure with roadside units (RSUs). In this paper, we propose a physical (PHY)- layer rogue edge detection scheme for VANETs according to the shared ambient radio signals observed during the same moving trace of the mobile device and the serving edge in the same vehicle. In this scheme, the edge node under test has to send the physical properties of the ambient radio signals, including the received signal strength indicator (RSSI) of the ambient signals with the corresponding source media access control (MAC) address during a given time slot. The mobile device can choose to compare the received ambient signal properties and its own record or apply the RSSI of the received signals to detect rogue edge attacks, and determines test threshold in the detection. We adopt a reinforcement learning technique to enable the mobile device to achieve the optimal detection policy in the dynamic VANET without being aware of the VANET model and the attack model. Simulation results show that the Q-learning based detection scheme can significantly reduce the detection error rate and increase the utility compared with existing schemes.
Lu, X., Guan, Z., Zhou, X., Du, X., Wu, L., Guizani, M..  2019.  A Secure and Efficient Renewable Energy Trading Scheme Based on Blockchain in Smart Grid. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1839—1844.
Nowadays, with the diversification and decentralization of energy systems, the energy Internet makes it possible to interconnect distributed energy sources and consumers. In the energy trading market, the traditional centralized model relies entirely on trusted third parties. However, as the number of entities involved in the transactions grows and the forms of transactions diversify, the centralized model gradually exposes problems such as insufficient scalability, High energy consumption, and low processing efficiency. To address these challenges, we propose a secure and efficient energy renewable trading scheme based on blockchain. In our scheme, the electricity market trading model is divided into two levels, which can not only protect the privacy, but also achieve a green computing. In addition, in order to adapt to the relatively weak computing power of the underlying equipment in smart grid, we design a credibility-based equity proof mechanism to greatly improve the system availability. Compared with other similar distributed energy trading schemes, we prove the advantages of our scheme in terms of high operational efficiency and low computational overhead through experimental evaluations. Additionally, we conduct a detailed security analysis to demonstrate that our solution meets the security requirements.
J
Jin, Y., Zhu, H., Shi, Z., Lu, X., Sun, L..  2015.  Cryptanalysis and improvement of two RFID-OT protocols based on quadratic residues. 2015 IEEE International Conference on Communications (ICC). :7234–7239.

The ownership transfer of RFID tag means a tagged product changes control over the supply chain. Recently, Doss et al. proposed two secure RFID tag ownership transfer (RFID-OT) protocols based on quadratic residues. However, we find that they are vulnerable to the desynchronization attack. The attack is probabilistic. As the parameters in the protocols are adopted, the successful probability is 93.75%. We also show that the use of the pseudonym of the tag h(TID) and the new secret key KTID are not feasible. In order to solve these problems, we propose the improved schemes. Security analysis shows that the new protocols can resist in the desynchronization attack and other attacks. By optimizing the performance of the new protocols, it is more practical and feasible in the large-scale deployment of RFID tags.